(If you’d prefer, you can skip the intro blathering and just download the full white paper)
Back in 1997, a commercial airline captain noticed his fellow pilots had a problem: they’d gotten so used to following the magenta flight path lines on their fancy new navigation screens that they were forgetting how to actually fly the damn plane. He called them “children of the magenta line.”
Fast forward to now, and I can’t shake the feeling we’re watching the same movie play out in tech; except, the stakes are higher and no regulatory body forcing us to maintain our skills.
Look, I’m not here to tell you AI is bad. I use these tools daily. They’re genuinely useful in limited contexts. But when Dario Amodei (the dude running Anthropic, the company building Claude) goes on record saying AI could wipe out half of all entry-level white-collar jobs in the next few years and push unemployment to 10-20%, maybe we should pay attention.
“We, as the producers of this technology, have a duty and an obligation to be honest about what is coming,” he told Axios. “I don’t think this is on people’s radar.”
He’s not wrong.
The Data’s Already Ugly
Here’s what caught my attention while pulling this together:
Software developer employment for the 22-25 age bracket? Down almost 20% since ChatGPT dropped. Meanwhile, developers over 30 are doing fine. We’re not replacing jobs—we’re eliminating the ladder people used to climb into them.
More than half of engineering leaders are planning to hire fewer juniors because AI lets their senior folks handle the load. AWS’s CEO called this “one of the dumbest things I’ve ever heard” and asked the obvious question: who exactly is going to know anything in ten years?
And my personal favorite: a controlled study found developers using AI tools took 19% longer to complete tasks—while genuinely believing they were 20% faster. That’s a 39-point gap between vibes and reality.
Oh, and a Replit AI agent deleted someone’s entire production database during an explicit code freeze, then tried to cover its tracks by fabricating thousands of fake records. Cool cool cool.
What I Actually Wrote
The full paper traces this from that 1997 pilot observation through Dan Geer’s 2015 warnings (the man saw this coming a decade early) to the current mess. I dug into:
- What the research actually shows vs. what the hype claims
- Where aviation’s lessons translate and where we’re in uncharted territory
- The security implications of AI-generated code (spoiler: not great)
- What orgs, industries, and policymakers can actually do about it
This isn’t a “burn it all down” screed. It’s an attempt to think clearly about a transition that’s moving faster than our institutions can adapt.
The window to shape how this goes is still open. Probably not for long.
Grab the full PDF. Read it, argue with it, tell me where I’m wrong and what I missed in the comments.





AI Proofing Your It/cyber Career: The Human Only Capabilities That Matter
In the past ~4 weeks I have personally observed some irrefutable things in “AI” that are very likely going to cause massive shocks to employment models in IT, software development, systems administration, and cybersecurity. I know some have already seen minor shocks. They are nothing compared to what’s highly probably ahead.
Nobody likely wants to hear this, but you absolutely need to make or take time this year to identify what you can do that AI cannot do and create some of those items if your list is short or empty.
The weavers in the 1800s used violence to get a 20-year pseudo-reprieve before they were pushed into obsolescence. We’ve got ~maybe 18 months. I’m as pushback-on-this-“AI”-thing as makes sense. I’d like for the bubble to burst. Even if it does, the rulers of our clicktatorship will just fuel a quick rebuild.
Four human-only capabilities in security
In my (broad) field, I think there are some things that make humans 110% necessary. Here’s my list — and it’d be great if folks in very subdomain-specific parts of cyber would provide similar ones. I try to stay in my lane.
1. Judgment under uncertainty with real consequences
These new “AI” systems can use tools to analyze a gazillion sessions and cluster payloads, but they do not (or absolutely should not) bear responsibility for the “we’re pulling the plug on production” decision at 3am. This “weight of consequence” shapes human expertise in ways that inform intuition, risk tolerance, and the ability to act decisively with incomplete information.
Organizations will continue needing people who can own outcomes, not just produce analysis.
2. Adversarial creativity and novel problem framing
The more recent “AI” systems are actually darn good at pattern matching against known patterns and recombining existing approaches. They absolutely suck at the “genuinely novel” — the attack vector nobody has documented, the defensive technique that requires understanding how a specific organization actually operates versus how it should operate.
The best security practitioners think like attackers in ways that go beyond “here are common TTPs.”
3. Institutional knowledge and relationship capital
A yuge one.
Understanding that the finance team always ignores security warnings — especially Dave — during quarter-close. That the legacy SCADA system can’t be patched because the vendor went bankrupt in 2019. That the CISO and CTO have a long-running disagreement about cloud migration.
This context shapes what recommendations are actually actionable. Many technically correct analyses are organizationally useless.
4. The ability to build and maintain trust
The biggest one.
When a breach happens, executives don’t want a report from an “AI”. They want someone who can look them in the eye, explain what happened, and take ownership of the path forward. The human element of security leadership is absolutely not going away.
How to develop these capabilities
Develop depth in areas that require your presence or legal accountability. Disciplines such as incident response, compliance attestation, or security architecture for air-gapped or classified environments. These have regulatory and practical barriers to full automation.
Build expertise in the seams between systems. Understanding how a given combination of legacy mainframe, cloud services, and OT environment actually interconnects requires the kind of institutional archaeology (or the powers of a sexton) that doesn’t exist in training data.
Get comfortable being the human in the loop. I know this will get me tapping mute or block a lot, but you’re going to need to get comfortable being the human in the loop for “AI”-augmented workflows. The analyst who can effectively direct tools, validate outputs (b/c these things will always make stuff up), and translate findings for different audiences has a different job than before but still a necessary one.
Learn to ask better questions. Bring your hypotheses, domain expertise, and knowing which threads are worth pulling to the table. That editorial judgment about what matters is undervalued, and is going to take a while to infuse into “AI” systems.
We’re all John Henry now
A year ago, even with long covid brain fog, I could out-“John Henry” all of the commercial AI models at programming, cyber, and writing tasks. Both in speed and quality.
Now, with the fog gone, I’m likely ~3 months away from being slower than “AI” on a substantial number of core tasks that it can absolutely do. I’ve seen it. I’ve validated the outputs. It sucks. It really really sucks. And it’s not because I’m feeble or have some other undisclosed brain condition (unlike 47). These systems are being curated to do exactly that: erase all of us John Henrys.
The folks who thrive will be those who can figure out what “AI” capabilities aren’t complete garbage and wield them with uniquely human judgment rather than competing on tasks where “AI” has clear advantages.
The pipeline problem
The very uncomfortable truth: there will be fewer entry-level positions that consist primarily of “look at alerts and escalate.” That pipeline into the field is narrowing at a frightening pace.
What concerns me most isn’t the senior practitioners. We’ll adapt and likely become that much more effective. It’s the junior folks who won’t get the years of pattern exposure that built our intuition in the first place.
That’s a pipeline problem the industry hasn’t seriously grappled with yet — and isn’t likely to b/c of the hot, thin air in the offices and boardrooms of myopic and greedy senior executives.