52Vis Week #3 – Waste Not, Want Not

The Wall Street Journal did a project piece [a while back](http://projects.wsj.com/waste-lands/) in the _”Waste Lands: America’s Forgotten Nuclear Legacy”_. They dug through [Department of Energy](http://www.lm.doe.gov/default.aspx?id=2602) and [CDC](http://www.cdc.gov/niosh/ocas/ocasawe.html) data to provide an overview of the lingering residue of this toxic time in America’s past (somehow, I have to believe the fracking phenomena of our modern era will end up doing far more damage in the long run).

Being a somewhat interactive piece, I was able to tease out the data source behind it for this week’s challenge. I’m, once again, removing the obvious vis and re-creating a non-interactive version of the WSJ’s main map view (with some additional details).

There’s definitely a story or two here, but I felt that the overall message fell a bit flat the way the WSJ folks told it. Can you find an angle or question that tells a tale in a more compelling fashion? I added some hints in the code snippet below (and in the repo) as to how you might find additional details for each toxic site (and said details are super-scrape-able with `rvest`). I also noticed some additional external data sets that could be brought in (but I’ll leave that detective work to our contestants).

If you’re up to the task, fork [this week’s repo](https://github.com/52vis/2016-15), create a subdirectory for your submission and shoot a PR my way (notifying folks here in the comments about your submission is also encouraged).

Entries accepted up until 2016-04-20 23:59:59 EDT.

Hadley has volunteered a signed book and I think I’ll take him up on the offer for this week’s prize (unless you really want a copy of Data-Driven Security :-).

One last note: I’ve secured `52vis.com` and will be getting that configured for next week’s contest. It’ll be a nice showcase site for all the submissions.

library(albersusa) # devtools::install_github("hrbrmstr/hrbrmisc")
library(rgeos)
library(maptools)
library(ggplot2)
library(ggalt)
library(ggthemes)
library(jsonlite)
library(tidyr)
library(dplyr)
library(purrr)
 
#' WSJ Waste Lands: http://projects.wsj.com/waste-lands/
#' Data from: http://www.lm.doe.gov/default.aspx?id=2602 &
#'            http://www.cdc.gov/niosh/ocas/ocasawe.html
 
sites <- fromJSON("sites.json", flatten=TRUE)
 
#' need to replace the 0-length data.frames with at least one row of `NA`s
#' so we can safely `unnest()` them later
 
sites$locations <- map(sites$locations, function(x) {
  if (nrow(x) == 0) {
    data_frame(latitude=NA, longitude=NA, postal_code=NA, name=NA, street_address=NA)
  } else {
    x
  }
})
 
#' we'll need this later
 
sites$site.rating <- factor(sites$site.rating,
                           levels=c(3:0),
                           labels=c("Remote or no potential for radioactive contamination, based on criteria at the time of FUSRAP review.",
                                    "Referred to another agency or program, no authority to clean up under FUSRAP, or status unclear.",
                                    "Cleanup declared complete under FUSRAP.",
                                    "Cleanup in progress under the Formerly Utilized Sites Remedial Action Program (FUSRAP)."))
 
#' One teensy discrepancy:
 
nrow(sites)
 
#' ## [1] 517
#'
#' The stacked bars total on the WSJ site is 515.
#' Further complication is that sites$locations is a list column with nested
#' data.frames:
 
sites <- unnest(sites)
 
nrow(sites)
 
#' ## [1] 549
 
sum(complete.cases(sites[,c("longitude", "latitude")]))
 
#' ## [1] 352
#'
#' So, just mapping long/lat is going to miss part of the story. But, I'm just
#' providing a kick-start for folks, so I'll just map long/lat :-)
 
glimpse(sites)
 
#' ## Observations: 549
#' ## Variables: 11
#' ## $ site.city      (chr) "Flint", "Albuquerque", "Buffalo", "Los...
#' ## $ site.name      (chr) "AC Spark Plug, Dort Highway Plant", "A...
#' ## $ site.rating    (fctr) Remote or no potential for radioactive...
#' ## $ site.state     (chr) "MI", "NM", "NY", "NM", "PA", "NY", "OH...
#' ## $ site.state_ap  (chr) "Mich.", "N.M.", "N.Y.", "N.M.", "Pa.",...
#' ## $ site.slug      (chr) "1-ac-spark-plug-dort-highway-plant", "...
#' ## $ latitude       (dbl) 43.02938, NA, NA, 35.88883, 39.95295, 4...
#' ## $ longitude      (dbl) -83.65525, NA, NA, -106.30502, -75.5927...
#' ## $ postal_code    (chr) "48506", NA, NA, "87544", "19382", "100...
#' ## $ name           (chr) "", NA, NA, "", "", "", "Former Buildin...
#' ## $ street_address (chr) "1300 North Dort Highway", NA, NA, "Pue...
 
#' Note that `site.slug` can be used with this URL:
#' `http://projects.wsj.com/waste-lands/site/SITE.SLUG.HERE/` to get to
#' detail pages on the WSJ site.
 
#' I want to use my `albersusa` mutated U.S. shapefile for this (NOTE: I'm moving
#' `albersus` into one of the rOpenSci pacakges soon vs publishing it standalone to CRAN)
#' so I need to mutate the Alaska points (there are no Hawaii points).
#' This step is *not necessary* unless you plan on displaying points on this
#' mutated map. I also realized I need to provide a mutated projection translation
#' function for AK & HI for the mutated Albers mapss.
 
tmp  <- data.frame(dplyr::select(filter(sites, site.state=="AK"), longitude, latitude))
coordinates(tmp) <- ~longitude+latitude
proj4string(tmp) <- CRS(us_longlat_proj)
tmp <- spTransform(tmp, CRS(us_laea_proj))
tmp <- elide(tmp, rotate=-50)
tmp <- elide(tmp, scale=max(apply(bbox(tmp), 1, diff)) / 2.3)
tmp <- elide(tmp, shift=c(-2100000, -2500000))
proj4string(tmp) <- CRS(us_laea_proj)
tmp <- spTransform(tmp, us_longlat_proj)
tmp <- as.data.frame(tmp)
 
sites[sites$site.state=="AK",]$longitude <- tmp$x
sites[sites$site.state=="AK",]$latitude <- tmp$y
 
#' and now we plot the sites
 
us_map <- fortify(usa_composite(), region="name")
 
gg <- ggplot()
gg <- gg + geom_map(data=us_map, map=us_map,
                    aes(x=long, y=lat, map_id=id),
                    color="#2b2b2b", size=0.15, fill="#e5e3df")
gg <- gg + geom_point(dat=sites, aes(x=longitude, y=latitude, fill=site.rating),
                      shape=21, color="white", stroke=1, alpha=1, size=3)
gg <- gg + scale_fill_manual(name="", values=c("#00a0b0", "#edc951", "#6a4a3c", "#eb6841"))
gg <- gg + coord_proj(us_laea_proj)
gg <- gg + guides(fill=guide_legend(override.aes=list(alpha=1, stroke=0.2, color="#2b2b2b", size=4)))
gg <- gg + labs(title="Waste Lands: America's Forgotten Nuclear Legacy",
                 caption="Data from the WSJ")
gg <- gg + theme_map()
gg <- gg + theme(legend.position="bottom")
gg <- gg + theme(legend.direction="vertical")
gg <- gg + theme(legend.key=element_blank())
gg <- gg + theme(plot.title=element_text(size=18, face="bold", hjust=0.5))
gg

waste

Cover image from Data-Driven Security
Amazon Author Page

9 Comments 52Vis Week #3 – Waste Not, Want Not

  1. Pingback: 52Vis Week #3 – Waste Not, Want Not – Mubashir Qasim

  2. @patternproject

    Hi,

    Requesting help with the following:

    I get the following error, when I run: sites <- fromJSON(“sites.json”, flatten=TRUE)

    Error: lexical error: invalid char in json text.
    sites.json
    (right here) ——^

    I suspect some quotes mark need to be added. Please comment

    Reply
    1. hrbrmstr

      that error is an indicator that the file is not in the current path (I think). jsonlite does that error when it sees a character string that it first tries as a file, but can’t find then tries to read as JSON. Need to make sure sites.json is in current working directory.

      Reply
  3. ottlngr

    When you want to use @hrbrmstr’s Albers projection make sure you installed his package with devtools::install_github(“hrbrmstr/hrbrmisc”)

    Reply

Leave a Reply to @patternproject Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.