Skip navigation

WWDC 2021 is on this week and many new fun things are being introduced, including some data science-friendly additions to the frameworks that come with Xcode 13 and available on macOS 12+ (and its *OS cousins).

Specifically, Apple has made tabular data a first-class citizen with the new TabularData app service.

A future post will have some more expository, but here’s a sample of core operations including:

  • reading in tabular data from CSV or JSON
  • examining the structure
  • working with columns and/or rows
  • grouping and filtering operations
  • transforming and removing columns

I’ve tagged this with rstats as there are R equivalents included for each operation so R folks can translate any Swift code they see in the future.

import TabularData

// define some basic formatting options for data frame output
let dOpts = FormattingOptions(maximumLineWidth: 80, maximumCellWidth: 10, maximumRowCount: 20, includesColumnTypes: true)

// read in a CSV file
// R: xdf <- read.csv("mtcars.csv")
var xdf = try! DataFrame.init(contentsOfCSVFile: URL(fileURLWithPath: "mtcars.csv"))

// take a look at it
// R: print(xdf) # no more print() in further R equivalents; just assume interactive or wrap with print
print(xdf.description(options: dOpts))

┏━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳╍╍╍╍╍╍┓
┃    ┃ mpg      ┃ cyl   ┃ disp     ┃ hp    ┃ drat     ┃ wt       ┃ 5    ┇
┃    ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Double> ┃ more ┇
┡━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇╍╍╍╍╍╍┩
│ 0  │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.62     │      ┆
│ 1  │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.875    │      ┆
│ 2  │ 22.8     │ 4     │ 108.0    │ 93    │ 3.85     │ 2.32     │      ┆
│ 3  │ 21.4     │ 6     │ 258.0    │ 110   │ 3.08     │ 3.215    │      ┆
│ 4  │ 18.7     │ 8     │ 360.0    │ 175   │ 3.15     │ 3.44     │      ┆
│ 5  │ 18.1     │ 6     │ 225.0    │ 105   │ 2.76     │ 3.46     │      ┆
│ 6  │ 14.3     │ 8     │ 360.0    │ 245   │ 3.21     │ 3.57     │      ┆
│ 7  │ 24.4     │ 4     │ 146.7    │ 62    │ 3.69     │ 3.19     │      ┆
│ 8  │ 22.8     │ 4     │ 140.8    │ 95    │ 3.92     │ 3.15     │      ┆
│ 9  │ 19.2     │ 6     │ 167.6    │ 123   │ 3.92     │ 3.44     │      ┆
│ 10 │ 17.8     │ 6     │ 167.6    │ 123   │ 3.92     │ 3.44     │      ┆
│ 11 │ 16.4     │ 8     │ 275.8    │ 180   │ 3.07     │ 4.07     │      ┆
│ 12 │ 17.3     │ 8     │ 275.8    │ 180   │ 3.07     │ 3.73     │      ┆
│ 13 │ 15.2     │ 8     │ 275.8    │ 180   │ 3.07     │ 3.78     │      ┆
│ 14 │ 10.4     │ 8     │ 472.0    │ 205   │ 2.93     │ 5.25     │      ┆
│ 15 │ 10.4     │ 8     │ 460.0    │ 215   │ 3.0      │ 5.424    │      ┆
│ 16 │ 14.7     │ 8     │ 440.0    │ 230   │ 3.23     │ 5.345    │      ┆
│ 17 │ 32.4     │ 4     │ 78.7     │ 66    │ 4.08     │ 2.2      │      ┆
│ 18 │ 30.4     │ 4     │ 75.7     │ 52    │ 4.93     │ 1.615    │      ┆
│ 19 │ 33.9     │ 4     │ 71.1     │ 65    │ 4.22     │ 1.835    │      ┆
┢╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍┪
┇ 12 more                                                               ┇
┗╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍┛

// dimensions
// R: dim(xdf)
print(xdf.shape)

(rows: 32, columns: 11)

// head
// R: head(xdf)
print(xdf.prefix(5).description(options: dOpts))

┏━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳╍╍╍╍╍╍┓
┃   ┃ mpg      ┃ cyl   ┃ disp     ┃ hp    ┃ drat     ┃ wt       ┃ 5    ┇
┃   ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Double> ┃ more ┇
┡━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇╍╍╍╍╍╍┩
│ 0 │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.62     │      ┆
│ 1 │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.875    │      ┆
│ 2 │ 22.8     │ 4     │ 108.0    │ 93    │ 3.85     │ 2.32     │      ┆
│ 3 │ 21.4     │ 6     │ 258.0    │ 110   │ 3.08     │ 3.215    │      ┆
│ 4 │ 18.7     │ 8     │ 360.0    │ 175   │ 3.15     │ 3.44     │      ┆
└───┴──────────┴───────┴──────────┴───────┴──────────┴──────────┴╌╌╌╌╌╌┘

// tail
// R: tail(xdf)
print(xdf.suffix(5).description(options: dOpts))

┏━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳╍╍╍╍╍╍┓
┃    ┃ mpg      ┃ cyl   ┃ disp     ┃ hp    ┃ drat     ┃ wt       ┃ 5    ┇
┃    ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Double> ┃ more ┇
┡━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇╍╍╍╍╍╍┩
│ 27 │ 30.4     │ 4     │ 95.1     │ 113   │ 3.77     │ 1.513    │      ┆
│ 28 │ 15.8     │ 8     │ 351.0    │ 264   │ 4.22     │ 3.17     │      ┆
│ 29 │ 19.7     │ 6     │ 145.0    │ 175   │ 3.62     │ 2.77     │      ┆
│ 30 │ 15.0     │ 8     │ 301.0    │ 335   │ 3.54     │ 3.57     │      ┆
│ 31 │ 21.4     │ 4     │ 121.0    │ 109   │ 4.11     │ 2.78     │      ┆
└────┴──────────┴───────┴──────────┴───────┴──────────┴──────────┴╌╌╌╌╌╌┘

// column summaries
// summary(xdf)
print(xdf.summaryOfAllColumns().description(options: dOpts))

┏━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━┳╍╍╍╍╍╍┓
┃   ┃ count(mpg) ┃ uniqueCou… ┃ top(mpg) ┃ topFreque… ┃ count(cyl) ┃ 39   ┇
┃   ┃ <Int>      ┃ <Int>      ┃ <Double> ┃ <Int>      ┃ <Int>      ┃ more ┇
┡━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━╇╍╍╍╍╍╍┩
│ 0 │ 32         │ 25         │ 21.4     │ 2          │ 32         │      ┆
└───┴────────────┴────────────┴──────────┴────────────┴────────────┴╌╌╌╌╌╌┘

// sort it
// R: library(tidyverse) # assume this going forward for R examples
// R: arrange(xdf, cyl)
xdf.sort(on: "cyl")

print(xdf.description(options: dOpts))

┏━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳╍╍╍╍╍╍┓
┃    ┃ mpg      ┃ cyl   ┃ disp     ┃ hp    ┃ drat     ┃ wt       ┃ 5    ┇
┃    ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Double> ┃ more ┇
┡━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇╍╍╍╍╍╍┩
│ 0  │ 22.8     │ 4     │ 108.0    │ 93    │ 3.85     │ 2.32     │      ┆
│ 1  │ 24.4     │ 4     │ 146.7    │ 62    │ 3.69     │ 3.19     │      ┆
│ 2  │ 22.8     │ 4     │ 140.8    │ 95    │ 3.92     │ 3.15     │      ┆
│ 3  │ 32.4     │ 4     │ 78.7     │ 66    │ 4.08     │ 2.2      │      ┆
│ 4  │ 30.4     │ 4     │ 75.7     │ 52    │ 4.93     │ 1.615    │      ┆
│ 5  │ 33.9     │ 4     │ 71.1     │ 65    │ 4.22     │ 1.835    │      ┆
│ 6  │ 21.5     │ 4     │ 120.1    │ 97    │ 3.7      │ 2.465    │      ┆
│ 7  │ 27.3     │ 4     │ 79.0     │ 66    │ 4.08     │ 1.935    │      ┆
│ 8  │ 26.0     │ 4     │ 120.3    │ 91    │ 4.43     │ 2.14     │      ┆
│ 9  │ 30.4     │ 4     │ 95.1     │ 113   │ 3.77     │ 1.513    │      ┆
│ 10 │ 21.4     │ 4     │ 121.0    │ 109   │ 4.11     │ 2.78     │      ┆
│ 11 │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.62     │      ┆
│ 12 │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.875    │      ┆
│ 13 │ 21.4     │ 6     │ 258.0    │ 110   │ 3.08     │ 3.215    │      ┆
│ 14 │ 18.1     │ 6     │ 225.0    │ 105   │ 2.76     │ 3.46     │      ┆
│ 15 │ 19.2     │ 6     │ 167.6    │ 123   │ 3.92     │ 3.44     │      ┆
│ 16 │ 17.8     │ 6     │ 167.6    │ 123   │ 3.92     │ 3.44     │      ┆
│ 17 │ 19.7     │ 6     │ 145.0    │ 175   │ 3.62     │ 2.77     │      ┆
│ 18 │ 18.7     │ 8     │ 360.0    │ 175   │ 3.15     │ 3.44     │      ┆
│ 19 │ 14.3     │ 8     │ 360.0    │ 245   │ 3.21     │ 3.57     │      ┆
┢╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍┪
┇ 12 more                                                               ┇
┗╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍┛

// read in a JSON File
// R: xdf2 <- jsonlite::fromJSON("mtcars.json")
var xdf2 = try! DataFrame.init(contentsOfJSONFile: URL(fileURLWithPath: "mtcars.json"))

// bind the rows together
// R: xdf <- bind_rows(xdf, xdf2)
xdf.append(xdf2)

// get the new summary
// R: summary(xdf)
print(xdf.summaryOfAllColumns().description(options: dOpts))

┏━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━┳╍╍╍╍╍╍┓
┃   ┃ count(mpg) ┃ uniqueCou… ┃ top(mpg) ┃ topFreque… ┃ count(cyl) ┃ 39   ┇
┃   ┃ <Int>      ┃ <Int>      ┃ <Double> ┃ <Int>      ┃ <Int>      ┃ more ┇
┡━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━╇╍╍╍╍╍╍┩
│ 0 │ 64         │ 25         │ 21.4     │ 4          │ 64         │      ┆
└───┴────────────┴────────────┴──────────┴────────────┴────────────┴╌╌╌╌╌╌┘

// basic filtering
// R: xdf.filter(cyl == 6)
print( xdf.filter(on: "cyl", Int.self) { (val) in val == 6 } )

┏━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳╍╍╍╍╍╍┓
┃    ┃ mpg      ┃ cyl   ┃ disp     ┃ hp    ┃ drat     ┃ wt       ┃ 5    ┇
┃    ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Double> ┃ more ┇
┡━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇╍╍╍╍╍╍┩
│ 11 │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.62     │      ┆
│ 12 │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.875    │      ┆
│ 13 │ 21.4     │ 6     │ 258.0    │ 110   │ 3.08     │ 3.215    │      ┆
│ 14 │ 18.1     │ 6     │ 225.0    │ 105   │ 2.76     │ 3.46     │      ┆
│ 15 │ 19.2     │ 6     │ 167.6    │ 123   │ 3.92     │ 3.44     │      ┆
│ 16 │ 17.8     │ 6     │ 167.6    │ 123   │ 3.92     │ 3.44     │      ┆
│ 17 │ 19.7     │ 6     │ 145.0    │ 175   │ 3.62     │ 2.77     │      ┆
│ 32 │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.62     │      ┆
│ 33 │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.875    │      ┆
│ 35 │ 21.4     │ 6     │ 258.0    │ 110   │ 3.08     │ 3.215    │      ┆
┢╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍┪
┇ 4 more                                                                ┇
┗╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍┛

// group by a column
// R: group_by(xdf, cyl)
print(xdf.grouped(by: "cyl"))

4
┏━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳╍╍╍╍╍╍┓
┃   ┃ mpg      ┃ cyl   ┃ disp     ┃ hp    ┃ drat     ┃ wt       ┃ 5    ┇
┃   ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Double> ┃ more ┇
┡━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇╍╍╍╍╍╍┩
│ 0 │ 22.8     │ 4     │ 108.0    │ 93    │ 3.85     │ 2.32     │      ┆
│ 1 │ 24.4     │ 4     │ 146.7    │ 62    │ 3.69     │ 3.19     │      ┆
│ 2 │ 22.8     │ 4     │ 140.8    │ 95    │ 3.92     │ 3.15     │      ┆
│ 3 │ 32.4     │ 4     │ 78.7     │ 66    │ 4.08     │ 2.2      │      ┆
│ 4 │ 30.4     │ 4     │ 75.7     │ 52    │ 4.93     │ 1.615    │      ┆
│ 5 │ 33.9     │ 4     │ 71.1     │ 65    │ 4.22     │ 1.835    │      ┆
│ 6 │ 21.5     │ 4     │ 120.1    │ 97    │ 3.7      │ 2.465    │      ┆
│ 7 │ 27.3     │ 4     │ 79.0     │ 66    │ 4.08     │ 1.935    │      ┆
│ 8 │ 26.0     │ 4     │ 120.3    │ 91    │ 4.43     │ 2.14     │      ┆
│ 9 │ 30.4     │ 4     │ 95.1     │ 113   │ 3.77     │ 1.513    │      ┆
┢╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍┪
┇ 12 more                                                              ┇
┗╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍┛

6
┏━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳╍╍╍╍╍╍┓
┃    ┃ mpg      ┃ cyl   ┃ disp     ┃ hp    ┃ drat     ┃ wt       ┃ 5    ┇
┃    ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Double> ┃ more ┇
┡━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇╍╍╍╍╍╍┩
│ 11 │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.62     │      ┆
│ 12 │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.875    │      ┆
│ 13 │ 21.4     │ 6     │ 258.0    │ 110   │ 3.08     │ 3.215    │      ┆
│ 14 │ 18.1     │ 6     │ 225.0    │ 105   │ 2.76     │ 3.46     │      ┆
│ 15 │ 19.2     │ 6     │ 167.6    │ 123   │ 3.92     │ 3.44     │      ┆
│ 16 │ 17.8     │ 6     │ 167.6    │ 123   │ 3.92     │ 3.44     │      ┆
│ 17 │ 19.7     │ 6     │ 145.0    │ 175   │ 3.62     │ 2.77     │      ┆
│ 32 │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.62     │      ┆
│ 33 │ 21.0     │ 6     │ 160.0    │ 110   │ 3.9      │ 2.875    │      ┆
│ 35 │ 21.4     │ 6     │ 258.0    │ 110   │ 3.08     │ 3.215    │      ┆
┢╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍┪
┇ 4 more                                                                ┇
┗╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍┛

8
┏━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳╍╍╍╍╍╍┓
┃    ┃ mpg      ┃ cyl   ┃ disp     ┃ hp    ┃ drat     ┃ wt       ┃ 5    ┇
┃    ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Double> ┃ more ┇
┡━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇╍╍╍╍╍╍┩
│ 18 │ 18.7     │ 8     │ 360.0    │ 175   │ 3.15     │ 3.44     │      ┆
│ 19 │ 14.3     │ 8     │ 360.0    │ 245   │ 3.21     │ 3.57     │      ┆
│ 20 │ 16.4     │ 8     │ 275.8    │ 180   │ 3.07     │ 4.07     │      ┆
│ 21 │ 17.3     │ 8     │ 275.8    │ 180   │ 3.07     │ 3.73     │      ┆
│ 22 │ 15.2     │ 8     │ 275.8    │ 180   │ 3.07     │ 3.78     │      ┆
│ 23 │ 10.4     │ 8     │ 472.0    │ 205   │ 2.93     │ 5.25     │      ┆
│ 24 │ 10.4     │ 8     │ 460.0    │ 215   │ 3.0      │ 5.424    │      ┆
│ 25 │ 14.7     │ 8     │ 440.0    │ 230   │ 3.23     │ 5.345    │      ┆
│ 26 │ 15.5     │ 8     │ 318.0    │ 150   │ 2.76     │ 3.52     │      ┆
│ 27 │ 15.2     │ 8     │ 304.0    │ 150   │ 3.15     │ 3.435    │      ┆
┢╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍┪
┇ 18 more                                                               ┇
┗╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍┛

// number of groups
// R: group_by(xdf, cyl) %>% group_keys() %>% nrow()
print(xdf.grouped(by: "cyl").count)

3

// group, manipulate (in this case, filter), and re-combine
// R: group_by(xdf) %>% filter(mpg < 20) %>% ungroup()
print(
  xdf.grouped(by: "cyl").mapGroups { (val) in
    val.filter(on: "mpg", Double.self) { (val) in val! < 20 }.base
  }.ungrouped()
)

┏━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳╍╍╍╍╍╍┓
┃   ┃ mpg      ┃ disp     ┃ hp    ┃ drat     ┃ wt       ┃ qsec     ┃ 5    ┇
┃   ┃ <Double> ┃ <Double> ┃ <Int> ┃ <Double> ┃ <Double> ┃ <Double> ┃ more ┇
┡━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇╍╍╍╍╍╍┩
│ 0 │ 22.8     │ 108.0    │ 93    │ 3.85     │ 2.32     │ 18.61    │      ┆
│ 1 │ 24.4     │ 146.7    │ 62    │ 3.69     │ 3.19     │ 20.0     │      ┆
│ 2 │ 22.8     │ 140.8    │ 95    │ 3.92     │ 3.15     │ 22.9     │      ┆
│ 3 │ 32.4     │ 78.7     │ 66    │ 4.08     │ 2.2      │ 19.47    │      ┆
│ 4 │ 30.4     │ 75.7     │ 52    │ 4.93     │ 1.615    │ 18.52    │      ┆
│ 5 │ 33.9     │ 71.1     │ 65    │ 4.22     │ 1.835    │ 19.9     │      ┆
│ 6 │ 21.5     │ 120.1    │ 97    │ 3.7      │ 2.465    │ 20.01    │      ┆
│ 7 │ 27.3     │ 79.0     │ 66    │ 4.08     │ 1.935    │ 18.9     │      ┆
│ 8 │ 26.0     │ 120.3    │ 91    │ 4.43     │ 2.14     │ 16.7     │      ┆
│ 9 │ 30.4     │ 95.1     │ 113   │ 3.77     │ 1.513    │ 16.9     │      ┆
┢╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍┪
┇ 182 more                                                                ┇
┗╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍┛

// look at one column
// R: xdf$cyl
print( xdf["cyl"] )

┏━━━━━━━┓
┃ cyl   ┃
┃ <Int> ┃
┡━━━━━━━┩
│ 4     │
│ 4     │
│ 4     │
│ 4     │
│ 4     │
│ 4     │
│ 4     │
│ 4     │
│ 4     │
│ 4     │
┢╍╍╍╍╍╍╍┪
┇ 54 m… ┇
┗╍╍╍╍╍╍╍┛

// combine two columns and look at it
// R: mutate(xdf, cyl_mpg = sprintf("%s:%s", cyl, mpg) %>% select(-cyl, -mpg)
// R: unite(xdf, cyl_mpg, cyl, mpg, sep = ":") # alternate way
xdf.combineColumns("cyl", "mpg", into: "cyl_mpg") { (val1: Int?, val2: Double?) -> String in
  String(val1 ?? 0) + ":" + String(val2 ?? 0.0)
}

print(xdf["cyl_mpg"])

┏━━━━━━━━━━┓
┃ cyl_mpg  ┃
┃ <String> ┃
┡━━━━━━━━━━┩
│ 4:22.8   │
│ 4:24.4   │
│ 4:22.8   │
│ 4:32.4   │
│ 4:30.4   │
│ 4:33.9   │
│ 4:21.5   │
│ 4:27.3   │
│ 4:26.0   │
│ 4:30.4   │
┢╍╍╍╍╍╍╍╍╍╍┪
┇ 54 more  ┇
┗╍╍╍╍╍╍╍╍╍╍┛

// look at the colnames (^^ removes "cyl" and "mpg"
// R: colnames(xdf)
print(xdf.columns.map{ col in col.name })

["cyl_mpg", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb"]

// turn an Int into a Double
// R: xdf$hp <- as.double(xdf$hp) # or use dplyr::mutate()
xdf.transformColumn("hp") { (val1: Int?) -> Double? in
  Double(val1 ?? 0)
}

print(xdf["hp"])

┏━━━━━━━━━━┓
┃ hp       ┃
┃ <Double> ┃
┡━━━━━━━━━━┩
│ 93.0     │
│ 62.0     │
│ 95.0     │
│ 66.0     │
│ 52.0     │
│ 65.0     │
│ 97.0     │
│ 66.0     │
│ 91.0     │
│ 113.0    │
┢╍╍╍╍╍╍╍╍╍╍┪
┇ 54 more  ┇
┗╍╍╍╍╍╍╍╍╍╍┛

// look at the coltypes
// R: sapply(mtcars, typeof)
print(xdf.columns.map{ col in col.wrappedElementType })

[Swift.String, Swift.Double, Swift.Double, Swift.Double, Swift.Double, Swift.Double, Swift.Int, Swift.Int, Swift.Int, Swift.Int]

// distinct horsepower
// R: distinct(xdf, hp)
print(xdf["hp"].distinct())

┏━━━━━━━━━━┓
┃ hp       ┃
┃ <Double> ┃
┡━━━━━━━━━━┩
│ 93.0     │
│ 62.0     │
│ 95.0     │
│ 66.0     │
│ 52.0     │
│ 65.0     │
│ 97.0     │
│ 91.0     │
│ 113.0    │
│ 109.0    │
┢╍╍╍╍╍╍╍╍╍╍┪
┇ 12 more  ┇
┗╍╍╍╍╍╍╍╍╍╍┛

// row slices
// R: xdf[10,]
print(xdf.rows[10])

┏━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳╍╍╍╍╍╍┓
┃    ┃ cyl_mpg  ┃ disp     ┃ hp       ┃ drat     ┃ wt       ┃ qsec     ┃ 4    ┇
┃    ┃ <String> ┃ <Double> ┃ <Double> ┃ <Double> ┃ <Double> ┃ <Double> ┃ more ┇
┡━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇╍╍╍╍╍╍┩
│ 10 │ 4:21.4   │ 121.0    │ 109.0    │ 4.11     │ 2.78     │ 18.6     │      ┆
└────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴╌╌╌╌╌╌┘

// R: xdf[3:10,]
print(xdf.rows[3...10])

Rows(base: 
┏━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳╍╍╍╍╍╍┓
┃   ┃ cyl_mpg  ┃ disp     ┃ hp       ┃ drat     ┃ wt       ┃ qsec     ┃ 4    ┇
┃   ┃ <String> ┃ <Double> ┃ <Double> ┃ <Double> ┃ <Double> ┃ <Double> ┃ more ┇
┡━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇╍╍╍╍╍╍┩
│ 0 │ 4:22.8   │ 108.0    │ 93.0     │ 3.85     │ 2.32     │ 18.61    │      ┆
│ 1 │ 4:24.4   │ 146.7    │ 62.0     │ 3.69     │ 3.19     │ 20.0     │      ┆
│ 2 │ 4:22.8   │ 140.8    │ 95.0     │ 3.92     │ 3.15     │ 22.9     │      ┆
│ 3 │ 4:32.4   │ 78.7     │ 66.0     │ 4.08     │ 2.2      │ 19.47    │      ┆
│ 4 │ 4:30.4   │ 75.7     │ 52.0     │ 4.93     │ 1.615    │ 18.52    │      ┆
│ 5 │ 4:33.9   │ 71.1     │ 65.0     │ 4.22     │ 1.835    │ 19.9     │      ┆
│ 6 │ 4:21.5   │ 120.1    │ 97.0     │ 3.7      │ 2.465    │ 20.01    │      ┆
│ 7 │ 4:27.3   │ 79.0     │ 66.0     │ 4.08     │ 1.935    │ 18.9     │      ┆
│ 8 │ 4:26.0   │ 120.3    │ 91.0     │ 4.43     │ 2.14     │ 16.7     │      ┆
│ 9 │ 4:30.4   │ 95.1     │ 113.0    │ 3.77     │ 1.513    │ 16.9     │      ┆
┢╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍╍╍╍╍┷╍╍╍╍╍╍┪
┇ 54 more                                                                    ┇
┗╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍┛
, subranges: _RangeSet(3..<11))

2 Trackbacks/Pingbacks

  1. […] WWDC 2021 is on this week and many new fun things are being introduced, including some data science-friendly additions to the Read more […]

  2. […] article was first published on R – rud.is, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here) […]

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.