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Nonlinear Dot Plots
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Fig. 1. A root dot plot containing more than 9,000 data points. The data set shows the monthly average of daily maximum
temperatures, measured by weather stations from around the world. Individual dots are colored according to the month they represent:
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Abstract—Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data
sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear
dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns
with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way
sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically
designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and
logarithmic histograms. Finally, we include feedback from an expert review.

Index Terms—Nonlinear dot plot, statistical graphics, sweep algorithm, layout

1 INTRODUCTION

Dot plots [36] provide a good representation of the frequency of data
items, serving the same goal as bar charts that show histograms. They
stack data points in the form of vertical columns of constant-size dots
along a horizontal axis. Like regular histograms, they use the horizontal
axis to show data values and the vertical axis for the frequency. How-
ever, there are important differences between dot plots and histograms.
First, dot plots use a separate dot for each data sample; therefore, it is
very easy and intuitive to actually count data items. Second, dot plots
do not use fixed uniform binning along the data value axis but rather
put dots at the exact horizontal position that corresponds to the data
value. Therefore, dot plots tend to be a more intuitively understandable,
clearly readable, and accurate representation of the distribution of data
values than histograms.

Unfortunately, dot plots do not scale well to very large data sets,
especially with a high dynamic range of frequencies. In particular,
outliers become very difficult to detect, as they will be rendered as
minute dots in seemingly empty spaces. Small gaps in areas with a
high dot density are smoothed out because of the constant dot size, and
therefore become unperceivable.

• The authors are with VISUS, University of Stuttgart, Germany. E-mail:
nils.rodrigues@visus.uni-stuttgart.de, weiskopf@visus.uni-stuttgart.de.

We address this problem of high dynamic frequency range by ex-
tending conventional dot plots to nonlinear dot plots. The basic idea
is to combine the concept of the dot plot with the nonlinear scaling as
known from logarithmic histograms (i.e., with a logarithmic scaling of
bar heights). To this end, we have to loosen the constraint of a constant
dot size. Now, the dot radius is scaled according to the height of the
dot column. Unfortunately, this scaling has implications that make its
realization more difficult in comparison to bar charts: Since dot plots
do not use uniform binning, the dot radius affects the positioning of the
dots; and scaling the radius does not only change the column height
but also its width. Therefore, the overall layout of the dot plot needs to
be dynamically adapted. Figure 1 shows an example of a nonlinear dot
plot.

Our main contribution is the model of data-adaptive scaling of dots
in combination with a new layout algorithm that supports this nonlinear
scaling. It is a two-way sweep algorithm that traverses the data value
range (horizontal axis of the diagram) in both directions. In this way,
we can guarantee a dense and symmetrical layout with a computational
complexity of O(n) for n data items. A sample implementation of our
algorithm is publicly available on GitHub1. The second contribution is
an improved rendering method for dot plots that allows us to remove
aliasing artifacts at high dot densities by low-pass filtering along dot
columns.

Nonlinear dot plots include conventional, linear dot plots as a special
case (of constant dot size). Therefore, even linear dot plots benefit
from our improved two-way sweep algorithm. However, the main

1https://github.com/NilsRodrigues/nonlineardotplots

benefit is the flexibility in adjusting the dot size, facilitating the accurate
visualization of distributions with a wide range of frequencies. For
example, they can resemble semi-log plots of histograms in which the
x-axis is unaltered, but the y-axis is scaled logarithmically. We also
show that (nonlinear) dot plots can be easily combined with per-dot
color-coding of additional data attributes, and integrated with other
variants of statistical plots, such as box plots. We compare examples of
nonlinear dot plots to linear dot plots as well as linear and logarithmic
histograms to show where they can be best used. This evaluation is
complemented by feedback from an expert review.

2 RELATED WORK

Dot plots have a long tradition as a type of diagram used for statistical
graphics. Jevons used them as early as 130 years ago [18].

Cleveland describes a modern use of the term “dot plot” [6]. He
proposes bar charts with less visual clutter, by replacing the bars with
only single dots at their end, directly depicting the value. Cleveland
also presents multiway dot plots [7], in which he uses round markers
in X-Y-plots. These types of visualization are often used in statistical
contexts and have proven to be well suited for small data sets [2, 24].
They typically use a nominal scale for one dimension and place mul-
tiple data series in the same plot. While Cleveland uses dots in his
visualizations, they are still based on, and very related to, other types
of plots. Another diagram type that uses dots are histodot plots [36],
which apply uniform binning to place the dots, but are fundamentally
histograms with different rendering; this approach is used, for instance,
in Sasieni and Royston’s plots for statistical analysis [25].

While all of the above techniques use dots in the context of frequency
visualization, we do not consider them as “dot plots” in the strict
sense. In fact, we follow the specification by Wilkinson [36], who
describes and analyzes dot plots in great detail. He also shows the
differences between actual dot plots and histodot plots. He describes
a number of rules that apply to dot plots: (1) Every data point has a
corresponding dot; (2) all dots are of the same size; (3) dots are not
merged, blurred, stretched, or squashed. One implication is that the dot
size is indirectly determined by the size of the overall diagram, its aspect
ratio, and the number of dots. Even with the above constraints, there
is a variety of conceivable layout algorithms. A recent approach by
Dang and Wilkinson [10] enhances dot plots by producing symmetrical
visualizations. The layout algorithm first draws the highest columns and
then centers them on the included data points. This creates plot areas
that are symmetric if the underlying samples also exhibit symmetry.
Therefore, the layout better characterizes the source data.

Dot plots are useful for relatively small or low dynamic range data
sets. They serve for finding clusters and gaps as they show the fre-
quency or density of values directly. At the same time, they also show
outliers at the exact location corresponding to their value. The simplic-
ity of the plots themselves and the countability of individual dots makes
this visualization intuitive to understand [3]. According to Padmi and
Russasmita [22], even children with no prior experience can quickly
learn and interpret dot plots, gaining insight into the characteristics of
displayed population data. The layout algorithm is simple enough for
students to draw the plot by hand (i.e., without computer hardware)
and use their results for ad-hoc analyses. There are other indications
why dots can be advantageous over other visual representations: For
example, Dang and Wilkinson [10] discuss advantages in the context of
stacking elements; Tory et al. [29] showed with a user study that dot dis-
plays are more effective than landscape visualizations for remembering
spatialization.

With this paper, we want to build on the existing work on dot plots
and exploit their effectiveness in visualizing data distributions. To our
knowledge, there is no dot plot variant that would allow for varying dot
size within one diagram. Therefore, nonlinear scaling for high dynamic
ranges is not possible yet. This is the main problem that we want to
address with this paper.

The general problem of defining adequate dot sizes is related to the
problem of finding a suitable bin width for histograms or the bandwidth
in kernel density estimation (KDE). Scott [26] introduces a method
for selecting an optimal bin width based on the number of samples

X1 X2 X3 X4 X5

(a)

X1 X2 X3 X4 X5

(b)

Fig. 2. Illustration of Wilkinson’s sweep layout algorithm [36]. Adding
a dot for x3 would create an overlap (marked red) with the previously
placed dot at x2 (a), and similarly for x4. These dots are therefore stacked
(b). x1 and x5 can be plotted without any issues.

and the distribution’s standard deviation. Wand [34] extends Scott’s
approach to fit more types of data. Interpreting a histogram not only
as a visualization but as the frequency distribution of underlying sam-
ples, allows using computational methods for various adaptive image
equalizations [23, 37, 38]. All of the above techniques find a single,
yet data-dependent width. There are other approaches that allow for
adaptation within a data set. For example, adaptive histograms (as
in the “ahist” function of the Ckmeans.1d.dp [35] package for the R
environment) aim at the visualization of data that contains multiple
clusters, with low dynamic range in each cluster; they create a single
visualization by combining histograms with fixed width per sample
cluster. As another example, Copin et al. [9] use adaptive spatial bin-
ning with a quadtree for their 2D renderings. However, none of these
approaches target the problem of dot plots. In particular, most of the
existing binning approaches lead to an (adaptive) partitioning of the
space of data values, whereas nonlinear dot plots differ in the sense that
they leave potentially empty space between columns of dots.

With nonlinear dot plots, the dot size decreases when multiple data
points are close to each other. This can be taken to the extreme: keep
the column height constant but only adapt the dot size. If the data
density is high enough, the result resembles a mixture of jittered strip
charts and stripe charts [5]. They are, however, interrupted by columns
containing only one or two dots that are rendered relatively large and
cover up areas that would otherwise be empty spaces.

The general problem of dealing with large or high dynamic range
data has also been an issue for visualizations other than dot plots [21].
For instance, histograms and bar charts in general, can be adapted to
use logarithmic scaling. This makes the graphics harder to interpret [1,
4, 8, 16, 30], but allows displaying the data without significant changes
to rendering algorithms. Nonlinear dot plots can also be seen as using
a different but linear height scale per column, thus composing a multi-
scale visualization as described by Isenberg et al. [17].

3 BACKGROUND OF LINEAR DOT PLOTS

We use a simplified version of Wilkinson’s original algorithm for linear
dot plots [36] as a starting point for our extension to nonlinear dot plots.
For a self-contained description, we briefly summarize the original
algorithm without smoothing and lateral offsets in this section.

As illustrated in Fig. 2, Algorithm 1 performs an upward sweep
through the data to place the dots from left to right. It assumes that the
data samples are given as data points with corresponding data value
xi, with index i = 1,2, . . . ,n for n samples in the entire data set. It
depends on the distance d, which is the (constant) diameter of the dots
for the creation of columns. The key point is that the algorithm keeps
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is to combine the concept of the dot plot with the nonlinear scaling as
known from logarithmic histograms (i.e., with a logarithmic scaling of
bar heights). To this end, we have to loosen the constraint of a constant
dot size. Now, the dot radius is scaled according to the height of the
dot column. Unfortunately, this scaling has implications that make its
realization more difficult in comparison to bar charts: Since dot plots
do not use uniform binning, the dot radius affects the positioning of the
dots; and scaling the radius does not only change the column height
but also its width. Therefore, the overall layout of the dot plot needs to
be dynamically adapted. Figure 1 shows an example of a nonlinear dot
plot.

Our main contribution is the model of data-adaptive scaling of dots
in combination with a new layout algorithm that supports this nonlinear
scaling. It is a two-way sweep algorithm that traverses the data value
range (horizontal axis of the diagram) in both directions. In this way,
we can guarantee a dense and symmetrical layout with a computational
complexity of O(n) for n data items. A sample implementation of our
algorithm is publicly available on GitHub1. The second contribution is
an improved rendering method for dot plots that allows us to remove
aliasing artifacts at high dot densities by low-pass filtering along dot
columns.

Nonlinear dot plots include conventional, linear dot plots as a special
case (of constant dot size). Therefore, even linear dot plots benefit
from our improved two-way sweep algorithm. However, the main
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and the distribution’s standard deviation. Wand [34] extends Scott’s
approach to fit more types of data. Interpreting a histogram not only
as a visualization but as the frequency distribution of underlying sam-
ples, allows using computational methods for various adaptive image
equalizations [23, 37, 38]. All of the above techniques find a single,
yet data-dependent width. There are other approaches that allow for
adaptation within a data set. For example, adaptive histograms (as
in the “ahist” function of the Ckmeans.1d.dp [35] package for the R
environment) aim at the visualization of data that contains multiple
clusters, with low dynamic range in each cluster; they create a single
visualization by combining histograms with fixed width per sample
cluster. As another example, Copin et al. [9] use adaptive spatial bin-
ning with a quadtree for their 2D renderings. However, none of these
approaches target the problem of dot plots. In particular, most of the
existing binning approaches lead to an (adaptive) partitioning of the
space of data values, whereas nonlinear dot plots differ in the sense that
they leave potentially empty space between columns of dots.

With nonlinear dot plots, the dot size decreases when multiple data
points are close to each other. This can be taken to the extreme: keep
the column height constant but only adapt the dot size. If the data
density is high enough, the result resembles a mixture of jittered strip
charts and stripe charts [5]. They are, however, interrupted by columns
containing only one or two dots that are rendered relatively large and
cover up areas that would otherwise be empty spaces.

The general problem of dealing with large or high dynamic range
data has also been an issue for visualizations other than dot plots [21].
For instance, histograms and bar charts in general, can be adapted to
use logarithmic scaling. This makes the graphics harder to interpret [1,
4, 8, 16, 30], but allows displaying the data without significant changes
to rendering algorithms. Nonlinear dot plots can also be seen as using
a different but linear height scale per column, thus composing a multi-
scale visualization as described by Isenberg et al. [17].

3 BACKGROUND OF LINEAR DOT PLOTS

We use a simplified version of Wilkinson’s original algorithm for linear
dot plots [36] as a starting point for our extension to nonlinear dot plots.
For a self-contained description, we briefly summarize the original
algorithm without smoothing and lateral offsets in this section.

As illustrated in Fig. 2, Algorithm 1 performs an upward sweep
through the data to place the dots from left to right. It assumes that the
data samples are given as data points with corresponding data value
xi, with index i = 1,2, . . . ,n for n samples in the entire data set. It
depends on the distance d, which is the (constant) diameter of the dots
for the creation of columns. The key point is that the algorithm keeps
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1. Sort input data values ascending 
2. Take lowest value 𝑥𝑥𝑖𝑖 that has not been plotted 
3. Start with 𝑐𝑐 = 1 

Increment 𝑐𝑐 while |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖+𝑐𝑐| ≤ 𝑑𝑑 
4. Place |𝑐𝑐| dots above 𝑥𝑥𝑖𝑖 in layout 
5. Mark values 𝑥𝑥𝑖𝑖 to 𝑥𝑥𝑖𝑖+𝑐𝑐 as plotted 
6. Repeat until there are no data values left 

Algorithm 1. Wilkinson’s original sweep algorithm

incrementing the number of dots, c, for the current column as long as
further dots still overlap with the column (step 3 of Algorithm 1).

Dot plots link the number of data points—which has to equal the
number of dots—and the size and aspect ratio of the diagram with the
dot size. Wilkinson recommends a default diameter of

d = 2
√

n , (1)

where n is the number of data points. He also recommends an aspect
ratio of 5:1 for the entire diagram. If the dot columns become too high
and overplotting occurs, the dot size needs to be reduced in order to
preserve the aspect ratio.

4 VISUALIZATION TECHNIQUE

To accommodate large, high dynamic range data sets and preserve
the advantages of dot plots, the diameter has to be varied in the same
plot: the higher the dot column, the smaller the rendered symbols.
This leads to a nonlinear modification in column height and width,
which is not very intuitive to interpret. In a histogram with nonlinear
scaling, we would only have to measure the height and know the
transformation function in order to calculate the represented value.
With nonlinear dot plots, we also have to factor in varying column
widths, making the computation of displayed value densities more
difficult (see Section 4.4). However, the total size of the plot can be
reduced, while retaining large dots for outliers. The decrease in height
also provides enough flexibility to bring the output closer to the optimal
aspect ratio.

We first describe an extended two-way sweep algorithm that allows
us to work with varying dot sizes (Section 4.1). Then, we discuss the
merging of intermediate results of the two-way sweep (Section 4.2),
models for the data-driven adaptation of the dot diameter (Section 4.3),
resulting envelopes (Section 4.4), and aliasing from rendering dots
(Section 4.5). The section closes with extensions and variants of the
visualization, including color-coding and overlays with other diagram
components (Section 4.6).

4.1 Two-Way Sweep Algorithm
Our new two-way sweep algorithm is summarized in Algorithm 2.
We place it side-by-side with Wilkinson’s original algorithm (without
additional smoothing) to clarify the modifications and extensions.

To adapt the dot size we have to replace the constant diameter from
Wilkinson’s original algorithm (step 3) by a data-dependent variant:

d(c) = dsingle · f (|c|) , (2)

where |c| is the current number of data points in a column and dsingle
is a constant start diameter that also facilitates an overall scaling of all
dots. The function f (c) should be weakly monotonically decreasing,
i.e., dots should become smaller for columns with more data points.
Also, we should have f (1) = 1, so that we obtain the diameter dsingle if
just a single dot is placed. Section 4.3 discusses concrete examples of
f (c).

As indicated in Algorithm 2, we can use the data-dependent dot
diameter (Eq. (2)) within Wilkinson’s original single-sweep algorithm.
However, while this single-sweep approach works very well for a

1. Sort input data values ascending 
2. Take lowest / highest value 𝑥𝑥𝑖𝑖 that has not been plotted 
3. Start with 𝑐𝑐 =     1 

Increment / Decrement 𝑐𝑐 while |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖+𝑐𝑐| ≤ 𝑑𝑑(𝑐𝑐) 
4. Place |𝑐𝑐| dots above 𝑥𝑥𝑖𝑖 in layout 
5. Mark values 𝑥𝑥𝑖𝑖 to 𝑥𝑥𝑖𝑖+𝑐𝑐 as plotted 
6. Repeat until there are no data values left 
7. Do one upward and one downward pass 
8. Use average of upward & downward pass 

- + 

Algorithm 2. Adaptation for symmetric, nonlinear dot plots.

constant dot size, it exhibits some issues when the data value density
decreases along the sweep direction. The underlying reason is that
shrinking dot size (during the sweep) should have an impact on which
dots should be included in, or excluded from, a column.

To illustrate this problem let us assume that the data consists of a
dense, sorted group of values X . The first and last value are within the
initial dot diameter, which would lead to rendering a single column for
linear plots: xn − x1 � d. During the sweep from the smallest to the
largest value xi, the first column becomes narrower: d(c1)� d. Only a
few values from X remain and create their own column, with only little
less width than the initial diameter: d(c2)� d. Since all values have
less than d distance, there will be overlap between the two columns’
dots.

The inverted case, however, presents no problems: When the density
increases along the sweep direction, the columns become narrower.
Therefore, a second column will not be as wide as the first one and
there will not be any overlap between them.

This observation leads to the solution of the problem: we use two
sweeps—one in each direction—and combine their results by aver-
aging. Algorithm 2 indicates the two sweeps as “upward pass” and
“downward pass”. For the “downward pass”, the index variable c has
to be negative. However, |c| denotes the current number of dots in the
column, regardless of the sweep direction. Section 4.2 describes in
more detail how the two sweeps are combined.

The original sweep algorithm only needs one pass over the source
data. Since none of our alterations are of higher complexity than O(n),
our proposed algorithm still has the same linear runtime complexity
(with a factor of roughly 2 for the number of computations).

4.2 Combining Sweeps
Dang and Wilkinson’s greedy version of a dot plot algorithm [10] was
designed to achieve symmetrical diagrams. While it is preferable to
create symmetrical visualizations when using symmetrical data, the
algorithm either introduces severe overlaps or gaps between dot stacks
(depending on the chosen factor for h in step 1). As already indicated
in Section 4.1, a single sweep direction creates overlap problems for
nonlinear dot plots, too. In addition, it also causes asymmetry under
certain conditions.

To address these problems, we decrease the sweep direction’s influ-
ence on the final layout by combining both directions, as described in
Algorithm 2. The open question is: how are the results of two sweeps
adequately combined?

As we will explain later on, the rules we imposed on the dot diame-
ters (Section 4.1) guarantee that both sweeps return the same number of
stacks. We can therefore also define a one-to-one mapping of columns
from one layout pass to the other. Columns resulting from a single
sweep are defined by three values: a position in the data dimension as
well as the number and diameter of the dots. For the merging of stacks
from opposite sweep directions, their positions can be readily averaged
by using their arithmetic mean. However, it is not straightforward to
merge the actual dots if the two columns contain a different number
of them: the arithmetic mean of the number of included dots might
contain “half” points, but we can only draw entire dots.

We choose to only draw entire dots (by rounding off the number of
dots in the current column) and carry the remainder to the following

(a) Single left-to-right pass

(b) Two opposed passes combined

Fig. 3. Two dot plots of the same data with varying value density: rising
from 1–2, falling from 3–4, and constant between 5–6. Vertical lines on
the bottom axis show the individual data value positions. Merging two
passes results in a plot with less overlap and more symmetry (b).

column. In total, this will result in the same number of dots as from a
single pass and the remainder is only distributed within a neighborhood
of columns with less than dsingle distance. The reason for this is that
data values that are further apart than dsingle, form clusters that do not
interfere with each other in the sweep algorithms. Therefore, dots from
different clusters can never appear in a column together.

In summary, the arithmetic mean can be applied to the column’s
positions directly and their height (number of dots) with the slight
modification above. However, the arithmetic mean is not suitable for
the diameter of rendered dots. This is an implication of the nonlinear
dependency between c and d(c) in Eq. (2). Instead, we calculate the
correct diameter from the actual number of dots in each column by
applying Eq. (2) to c after the number of dots is averaged.

There remains one prerequisite for the two-pass method to work:
both passes must return the same number of columns. This is important
because the first column of the upward pass has to be averaged with
the last column of the downward pass. If they do not match, the data
values of different neighborhoods will be merged. Let us analyze the
different scenarios encountered during the layout process, to check
whether the above prerequisite can be met. Our first observation is that
data values that are further apart than the start diameter dsingle divide
the data samples into clusters that can be treated separately. Therefore,
we can restrict the discussion to a single cluster of data samples.

Clusters that produce a single column in one direction will also
produce a single column in the opposite direction, i.e., this is a trivial
case. Let us assume the upward pass A resulted in two columns and
look at the following two scenarios.

Scenario 1: If the downward pass B returned a single column,
it would mean that the total number of values in the cluster was so
small that d(c) was still larger than the distance between the first and
last data value. This would, in turn, also mean that pass A would have
returned a single column containing the complete cluster, which is in
direct contradiction to our premise.

Scenario 2: Can pass B return three columns? If it started at the
same data point, where pass A finished, then its first column would

cover at least the same amount of data values as the last column of A.
That would leave the same data that pass A used for its first column,
which in turn would also only result in a single column of pass B.
Therefore, three columns could only be generated if pass B encountered
additional data values outside the cluster. However, we only look at the
data inside the cluster because different clusters are so far apart that
they do not interfere with each other.

According to this logic (similarly to mathematical induction), the
two opposed passes cannot result in a different dot stack count, which
makes our averaging method applicable to arbitrary source data.

As shown in Fig. 3b, the two-way layout leads to columns that are
better centered on contained data and have less severe overlaps than
the single-pass algorithm (see Fig. 3a). This makes our algorithm well
suited not only for nonlinear dot plots, but it also improves on the layout
of traditional, linear plots. Figure 3b also shows that a constant sample
density does not necessarily lead to a constant dot stack height, which
makes the visualization inconsistent with the underlying data. This
is due to rendering individual dots, which leads to quantized column
heights. In order to get a constant height among all columns of the
third cluster, we have to fit the initial dot diameter and the nonlinear
transformation to the specific samples. While these adapted parameters
will fit the targeted cluster, they might be wrong for the clusters at 1
and 3. Therefore, it is not trivial to find a globally optimal solution.

It is not even clear how to completely define optimality of a solution.
We might define on optimal solution as the one in which the distance of
rendered dots from their input values (layout error) is minimal. If we
then selected a sufficiently small dot diameter, we would render each dot
at the exact data value position and have an optimal solution according
to that metric. However, the resulting plot would not be readable
because the dots would be too small to perceive. Therefore, an objective
function for an optimal solution would have to take into account the
layout error but also the dot sizes, display resolution, viewing distance,
and aspect ratio. We leave the definition of such an objective function
as an open question for future research.

4.3 Dot Diameter
The above two-way sweep algorithm makes heavy use of the dynamic
adaption of dot size according to Eq. (2). Let us now have a closer look
at useful choices for the adaptation model, as formalized by f (c). For
this, we assume that we have a rather dense packing of dots so that the
dot plot resembles the corresponding histogram.

Although f (c) controls the nonlinearity of the dot plot, it is not
identical to the nonlinear mapping known from histograms or other
function plots. It is important to note that f (c) does not map original
height for a plot to the nonlinear modification. For example, we cannot
just use f (c) = log(c) to obtain the analog of a log-scale dot plot. In
fact, the height of a column with c dots is:

h(c) = c ·d(c) = dsingle · c · f (c) . (3)

As noted earlier, we require that f (1) = 1 and that f (c) decreases with
increasing c. In addition, we want to guarantee weak monotonicity of
the plot: a column with more data points should never be smaller than
a column with fewer points, i.e.,

h(c1)≤ h(c2) if c1 < c2 . (4)

The extreme case of constant height is obtained for:

f (c) =
1
c
, (5)

i.e., this choice leads to h(c1) = h(c2) = dsingle. As shown later in
Fig. 5b, there are some applications for this extreme model. The
corresponding visualization resembles a combination of jittered strip
charts and stripe charts [5] (see Fig. 5b). Typical nonlinear mappings
target strong monotonicity. To this end, the dot size needs to shrink less
quickly than in Eq. (5). A corresponding mapping is achieved by:

f (c) =
1
cs , (6)
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1. Sort input data values ascending 
2. Take lowest value 𝑥𝑥𝑖𝑖 that has not been plotted 
3. Start with 𝑐𝑐 = 1 

Increment 𝑐𝑐 while |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖+𝑐𝑐| ≤ 𝑑𝑑 
4. Place |𝑐𝑐| dots above 𝑥𝑥𝑖𝑖 in layout 
5. Mark values 𝑥𝑥𝑖𝑖 to 𝑥𝑥𝑖𝑖+𝑐𝑐 as plotted 
6. Repeat until there are no data values left 

Algorithm 1. Wilkinson’s original sweep algorithm

incrementing the number of dots, c, for the current column as long as
further dots still overlap with the column (step 3 of Algorithm 1).

Dot plots link the number of data points—which has to equal the
number of dots—and the size and aspect ratio of the diagram with the
dot size. Wilkinson recommends a default diameter of

d = 2
√

n , (1)

where n is the number of data points. He also recommends an aspect
ratio of 5:1 for the entire diagram. If the dot columns become too high
and overplotting occurs, the dot size needs to be reduced in order to
preserve the aspect ratio.

4 VISUALIZATION TECHNIQUE

To accommodate large, high dynamic range data sets and preserve
the advantages of dot plots, the diameter has to be varied in the same
plot: the higher the dot column, the smaller the rendered symbols.
This leads to a nonlinear modification in column height and width,
which is not very intuitive to interpret. In a histogram with nonlinear
scaling, we would only have to measure the height and know the
transformation function in order to calculate the represented value.
With nonlinear dot plots, we also have to factor in varying column
widths, making the computation of displayed value densities more
difficult (see Section 4.4). However, the total size of the plot can be
reduced, while retaining large dots for outliers. The decrease in height
also provides enough flexibility to bring the output closer to the optimal
aspect ratio.

We first describe an extended two-way sweep algorithm that allows
us to work with varying dot sizes (Section 4.1). Then, we discuss the
merging of intermediate results of the two-way sweep (Section 4.2),
models for the data-driven adaptation of the dot diameter (Section 4.3),
resulting envelopes (Section 4.4), and aliasing from rendering dots
(Section 4.5). The section closes with extensions and variants of the
visualization, including color-coding and overlays with other diagram
components (Section 4.6).

4.1 Two-Way Sweep Algorithm
Our new two-way sweep algorithm is summarized in Algorithm 2.
We place it side-by-side with Wilkinson’s original algorithm (without
additional smoothing) to clarify the modifications and extensions.

To adapt the dot size we have to replace the constant diameter from
Wilkinson’s original algorithm (step 3) by a data-dependent variant:

d(c) = dsingle · f (|c|) , (2)

where |c| is the current number of data points in a column and dsingle
is a constant start diameter that also facilitates an overall scaling of all
dots. The function f (c) should be weakly monotonically decreasing,
i.e., dots should become smaller for columns with more data points.
Also, we should have f (1) = 1, so that we obtain the diameter dsingle if
just a single dot is placed. Section 4.3 discusses concrete examples of
f (c).

As indicated in Algorithm 2, we can use the data-dependent dot
diameter (Eq. (2)) within Wilkinson’s original single-sweep algorithm.
However, while this single-sweep approach works very well for a

1. Sort input data values ascending 
2. Take lowest / highest value 𝑥𝑥𝑖𝑖 that has not been plotted 
3. Start with 𝑐𝑐 =     1 

Increment / Decrement 𝑐𝑐 while |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖+𝑐𝑐| ≤ 𝑑𝑑(𝑐𝑐) 
4. Place |𝑐𝑐| dots above 𝑥𝑥𝑖𝑖 in layout 
5. Mark values 𝑥𝑥𝑖𝑖 to 𝑥𝑥𝑖𝑖+𝑐𝑐 as plotted 
6. Repeat until there are no data values left 
7. Do one upward and one downward pass 
8. Use average of upward & downward pass 

- + 

Algorithm 2. Adaptation for symmetric, nonlinear dot plots.

constant dot size, it exhibits some issues when the data value density
decreases along the sweep direction. The underlying reason is that
shrinking dot size (during the sweep) should have an impact on which
dots should be included in, or excluded from, a column.

To illustrate this problem let us assume that the data consists of a
dense, sorted group of values X . The first and last value are within the
initial dot diameter, which would lead to rendering a single column for
linear plots: xn − x1 � d. During the sweep from the smallest to the
largest value xi, the first column becomes narrower: d(c1)� d. Only a
few values from X remain and create their own column, with only little
less width than the initial diameter: d(c2)� d. Since all values have
less than d distance, there will be overlap between the two columns’
dots.

The inverted case, however, presents no problems: When the density
increases along the sweep direction, the columns become narrower.
Therefore, a second column will not be as wide as the first one and
there will not be any overlap between them.

This observation leads to the solution of the problem: we use two
sweeps—one in each direction—and combine their results by aver-
aging. Algorithm 2 indicates the two sweeps as “upward pass” and
“downward pass”. For the “downward pass”, the index variable c has
to be negative. However, |c| denotes the current number of dots in the
column, regardless of the sweep direction. Section 4.2 describes in
more detail how the two sweeps are combined.

The original sweep algorithm only needs one pass over the source
data. Since none of our alterations are of higher complexity than O(n),
our proposed algorithm still has the same linear runtime complexity
(with a factor of roughly 2 for the number of computations).

4.2 Combining Sweeps
Dang and Wilkinson’s greedy version of a dot plot algorithm [10] was
designed to achieve symmetrical diagrams. While it is preferable to
create symmetrical visualizations when using symmetrical data, the
algorithm either introduces severe overlaps or gaps between dot stacks
(depending on the chosen factor for h in step 1). As already indicated
in Section 4.1, a single sweep direction creates overlap problems for
nonlinear dot plots, too. In addition, it also causes asymmetry under
certain conditions.

To address these problems, we decrease the sweep direction’s influ-
ence on the final layout by combining both directions, as described in
Algorithm 2. The open question is: how are the results of two sweeps
adequately combined?

As we will explain later on, the rules we imposed on the dot diame-
ters (Section 4.1) guarantee that both sweeps return the same number of
stacks. We can therefore also define a one-to-one mapping of columns
from one layout pass to the other. Columns resulting from a single
sweep are defined by three values: a position in the data dimension as
well as the number and diameter of the dots. For the merging of stacks
from opposite sweep directions, their positions can be readily averaged
by using their arithmetic mean. However, it is not straightforward to
merge the actual dots if the two columns contain a different number
of them: the arithmetic mean of the number of included dots might
contain “half” points, but we can only draw entire dots.

We choose to only draw entire dots (by rounding off the number of
dots in the current column) and carry the remainder to the following

(a) Single left-to-right pass

(b) Two opposed passes combined

Fig. 3. Two dot plots of the same data with varying value density: rising
from 1–2, falling from 3–4, and constant between 5–6. Vertical lines on
the bottom axis show the individual data value positions. Merging two
passes results in a plot with less overlap and more symmetry (b).

column. In total, this will result in the same number of dots as from a
single pass and the remainder is only distributed within a neighborhood
of columns with less than dsingle distance. The reason for this is that
data values that are further apart than dsingle, form clusters that do not
interfere with each other in the sweep algorithms. Therefore, dots from
different clusters can never appear in a column together.

In summary, the arithmetic mean can be applied to the column’s
positions directly and their height (number of dots) with the slight
modification above. However, the arithmetic mean is not suitable for
the diameter of rendered dots. This is an implication of the nonlinear
dependency between c and d(c) in Eq. (2). Instead, we calculate the
correct diameter from the actual number of dots in each column by
applying Eq. (2) to c after the number of dots is averaged.

There remains one prerequisite for the two-pass method to work:
both passes must return the same number of columns. This is important
because the first column of the upward pass has to be averaged with
the last column of the downward pass. If they do not match, the data
values of different neighborhoods will be merged. Let us analyze the
different scenarios encountered during the layout process, to check
whether the above prerequisite can be met. Our first observation is that
data values that are further apart than the start diameter dsingle divide
the data samples into clusters that can be treated separately. Therefore,
we can restrict the discussion to a single cluster of data samples.

Clusters that produce a single column in one direction will also
produce a single column in the opposite direction, i.e., this is a trivial
case. Let us assume the upward pass A resulted in two columns and
look at the following two scenarios.

Scenario 1: If the downward pass B returned a single column,
it would mean that the total number of values in the cluster was so
small that d(c) was still larger than the distance between the first and
last data value. This would, in turn, also mean that pass A would have
returned a single column containing the complete cluster, which is in
direct contradiction to our premise.

Scenario 2: Can pass B return three columns? If it started at the
same data point, where pass A finished, then its first column would

cover at least the same amount of data values as the last column of A.
That would leave the same data that pass A used for its first column,
which in turn would also only result in a single column of pass B.
Therefore, three columns could only be generated if pass B encountered
additional data values outside the cluster. However, we only look at the
data inside the cluster because different clusters are so far apart that
they do not interfere with each other.

According to this logic (similarly to mathematical induction), the
two opposed passes cannot result in a different dot stack count, which
makes our averaging method applicable to arbitrary source data.

As shown in Fig. 3b, the two-way layout leads to columns that are
better centered on contained data and have less severe overlaps than
the single-pass algorithm (see Fig. 3a). This makes our algorithm well
suited not only for nonlinear dot plots, but it also improves on the layout
of traditional, linear plots. Figure 3b also shows that a constant sample
density does not necessarily lead to a constant dot stack height, which
makes the visualization inconsistent with the underlying data. This
is due to rendering individual dots, which leads to quantized column
heights. In order to get a constant height among all columns of the
third cluster, we have to fit the initial dot diameter and the nonlinear
transformation to the specific samples. While these adapted parameters
will fit the targeted cluster, they might be wrong for the clusters at 1
and 3. Therefore, it is not trivial to find a globally optimal solution.

It is not even clear how to completely define optimality of a solution.
We might define on optimal solution as the one in which the distance of
rendered dots from their input values (layout error) is minimal. If we
then selected a sufficiently small dot diameter, we would render each dot
at the exact data value position and have an optimal solution according
to that metric. However, the resulting plot would not be readable
because the dots would be too small to perceive. Therefore, an objective
function for an optimal solution would have to take into account the
layout error but also the dot sizes, display resolution, viewing distance,
and aspect ratio. We leave the definition of such an objective function
as an open question for future research.

4.3 Dot Diameter
The above two-way sweep algorithm makes heavy use of the dynamic
adaption of dot size according to Eq. (2). Let us now have a closer look
at useful choices for the adaptation model, as formalized by f (c). For
this, we assume that we have a rather dense packing of dots so that the
dot plot resembles the corresponding histogram.

Although f (c) controls the nonlinearity of the dot plot, it is not
identical to the nonlinear mapping known from histograms or other
function plots. It is important to note that f (c) does not map original
height for a plot to the nonlinear modification. For example, we cannot
just use f (c) = log(c) to obtain the analog of a log-scale dot plot. In
fact, the height of a column with c dots is:

h(c) = c ·d(c) = dsingle · c · f (c) . (3)

As noted earlier, we require that f (1) = 1 and that f (c) decreases with
increasing c. In addition, we want to guarantee weak monotonicity of
the plot: a column with more data points should never be smaller than
a column with fewer points, i.e.,

h(c1)≤ h(c2) if c1 < c2 . (4)

The extreme case of constant height is obtained for:

f (c) =
1
c
, (5)

i.e., this choice leads to h(c1) = h(c2) = dsingle. As shown later in
Fig. 5b, there are some applications for this extreme model. The
corresponding visualization resembles a combination of jittered strip
charts and stripe charts [5] (see Fig. 5b). Typical nonlinear mappings
target strong monotonicity. To this end, the dot size needs to shrink less
quickly than in Eq. (5). A corresponding mapping is achieved by:

f (c) =
1
cs , (6)
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(a) 1,000 dots without blur (b) 10,000 dots without blur

(c) 1,000 dots with blur (d) 10,000 dots with blur

Fig. 4. Low-resolution plots of normal distributions. Column-oriented anti-aliasing dampens moiré patterns in visualizations (c) and (d). When used
with large dots, this blurring introduces unwanted optical effects (c).

with an additional parameter s that controls the shrink rate. The useful
range for the shrink rate s is between 0 and 1. Selecting a shrink rate
of s = 0 will create traditional linear dot plots; s = 1 yields the earlier
model of Eq. (5). For in-between shrink rates, the column height is
proportional to c1−s, with the fractional exponent 1− s corresponding
to a root. For later example images, we selected a default value of 0.4,
which leads to a column height of c0.6. This choice led to good results
for the examples of this paper, but could certainly be replaced for other
examples. We added a table with varying dsingle and s as supplemental
material to illustrate the effect of these parameters on the final layout.

The root mapping in Eq. (6) might be good for many data sets, but
it will not fit most processes in nature that exhibit exponential growth,
where the growth rate is proportional to the current function value.
Examples of such can be found in nuclear decay, the Weber-Fechner
law [11], and population growth. The existence of exponential pro-
cesses is also reflected in the way we represent floating point numbers:
mantissa and exponent. To get a log-scale mapping, we naively try to
approximate

h(c) = log(c) . (7)

Based on Eq. (3), we would calculate

f (c) =
logb(c)
dsingle · c

(8)

for any desired base b, but this would violate the requirements for
single dot columns, as log(1) = 0. To get f (1) = 1, we could change
the numerator in Eq. (8) to

logb(c)+dsingle .

This, in turn, would lead to other problems. For instance, with b = 2
and dsingle = 0.5, we would get larger dots in columns of two than in
single value stacks ( f (2) = 1.5). Instead, for logarithmic dot plots we
propose

logb(c+b−1) ·dsingle , (9)

as it fits all requirements when used with b ≥
√

5+1
2 (the golden ratio).

The supplemental material includes a table with varying dsingle and b
to illustrate the effect of these parameters on the layout.

The final issue is the choice of dsingle. This parameter should be
chosen according to the number of data samples, their distribution, the
size of the plot, and—very importantly—the targeted aspect ratio. We
iteratively optimize for dsingle: a plot is computed with the current value
of dsingle; this value is increased if the current aspect ratio is wider than
the target ratio and vice versa, until the target is reached.

4.4 Envelope
The above discussion holds for the mapping of height, i.e., a single
dimension. Now, the dot plots intrinsically link column height and
width because both dimensions are determined by the dot diameter. If
the diameter is scaled by a factor a, the actually covered area (i.e., the
area of the column) is scaled by a factor a2. Therefore, a square root
computation needs to be included in all mappings if the adjustment is
meant for areas, not just height.

Based on these observations, one can consider the limit case of a
very large number of dots and the envelope of the nonlinear dot plot.
For the case of root dot plots according to Eq. (6), the height of the
envelope scales with α(1−s)/(1+s) if the number of dots is multiplied by
α . Thus, the exponent s from the diameter scaling matches an exponent
of (1− s)/(1+ s) in the corresponding nonlinear histogram.

4.5 Anti-Aliasing
In general, dot plots can come with high demands regarding render qual-
ity because they consist of clearly defined dots with sharp boundaries.
Such boundaries in combination with some rather regular placement of
dots can lead to aliasing and moiré artifacts [13, 27]; see Fig. 4. The
main cause of moiré effects are small differences in dot sizes. These
accumulate along the height of neighboring columns and create virtual
tilted lines.

Typical anti-aliasing approaches from computer graphics work with
supersampling on the image plane, followed by low-pass filtering and
downsampling. Our solution adopts the same strategy but exploits the
special characteristics of dot plots. Low-pass filtering blurs the image,
i.e., the individual dots would eventually disappear and only a solid
colored area would appear. Other than generic anti-aliasing techniques,
we limit blurring to the vertical direction because individual columns

(a) Linear dot plot

(b) Strip dot plot (root plot with s = 1)

(c) Logarithmic histogram

Fig. 5. Visualizations of the multi-annual mean of maximum daily air temperatures of each month (in degrees Celsius). Image (a) is color-coded
according to the month J F M A M J J A S O N D . We use black dots in plot (b) to maximize the perceivable range of brightness.

should still be distinguishable. Furthermore, a few dots at the top and
bottom are left unchanged, as they play a key role in estimating the size
of individual dots and in comparing column heights.

We also decided on not blurring those columns that are not sur-
rounded by others because they do not add to the moiré effect. Finally,
we only start blurring after the dot count inside a column exceeds a
certain lower threshold (in our examples: 12) because otherwise, the
rendering does not create an area that is big enough for the effect to be
perceivable. Figures 4c and 4d show examples of anti-aliasing. Dots
in a blurred line are not countable anymore. However, as the height
of columns increases and the dot diameter decreases, it becomes more
and more difficult to make out individual dots for counting, anyway.
We use our anti-aliasing method with moderation in order to balance
advantages and side effects. The vertical lines in Fig. 4c are an example
of too aggressive blurring for the low dot density that trades the moiré
pattern for even worse optical effects, especially when rotating the
image. Therefore, we recommend anti-aliasing only for plots with very
small dots as in Fig. 4d.

4.6 Variants, Extensions, and Hybrid Visualizations
Just like conventional dot plots, our nonlinear generalization can be
widely applied to depict any kind of data distribution. Similarly, it can
be combined with other visual mappings to include further information
or emphasize certain aspects of the data.

One example is additional color mapping. In general, color plays
an important role in visualization because it can show additional data
attributes on top of the positional variables of the diagram. We argue
that color mapping is especially useful in the context of dot plots
because each single data sample generates exactly one dot, i.e., we

can have a direct mapping between data sample and color. To make
use of perceptual grouping by color (hue), similar colors should be
spatially grouped in the dot plot. We cannot change the layout between
the columns in the dot plot because they are driven by the distribution
of data values. However, we may modify the order of dots within a
column. Therefore, the dots in each column should be ordered vertically
according to the additional data attribute mapped to color. A typical
example is a chronological data distribution, i.e., a data set with samples
that do not only carry some data value but also a timestamp. Such time-
series distributions are best ordered chronologically in each dot column.
Another possible application of color is comparative visualization of
several data sets integrated in one dot plot: the color indicates the data
sources. The figures in Section 5 use such colored dot plots.

We mostly render our dot plots with the stacks aligned to the X-axis.
It is possible, however, to center the columns vertically and create dia-
grams with a horizontal symmetry axis (like Wilkinson’s symmetrical
dot plots [36]). Further variations can align dot stacks to the Y-axis.
This is especially useful when dealing with nominal data as it improves
the layout of labels and creates an output similar to Cleveland’s mul-
tiway dot plots [7]. In addition to layout and rendering variations, we
can combine different visualization methods. For instance, Fig. 7b
shows a symmetrical dot plot, overlaid by a box plot, whereas Fig. 3
adds strip charts to the X-axis. Such hybrid diagrams can help users
classify and identify data in meaningful ways, providing more insights.
Tukey’s suspended rootograms plot data in relation to a known density
distribution [31]. The same technique could be applied to the vertical
positioning of the dot stacks to show deviations, but would require
special care to adjust for areal distortions (see Section 4.4).
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(a) 1,000 dots without blur (b) 10,000 dots without blur

(c) 1,000 dots with blur (d) 10,000 dots with blur

Fig. 4. Low-resolution plots of normal distributions. Column-oriented anti-aliasing dampens moiré patterns in visualizations (c) and (d). When used
with large dots, this blurring introduces unwanted optical effects (c).

with an additional parameter s that controls the shrink rate. The useful
range for the shrink rate s is between 0 and 1. Selecting a shrink rate
of s = 0 will create traditional linear dot plots; s = 1 yields the earlier
model of Eq. (5). For in-between shrink rates, the column height is
proportional to c1−s, with the fractional exponent 1− s corresponding
to a root. For later example images, we selected a default value of 0.4,
which leads to a column height of c0.6. This choice led to good results
for the examples of this paper, but could certainly be replaced for other
examples. We added a table with varying dsingle and s as supplemental
material to illustrate the effect of these parameters on the final layout.

The root mapping in Eq. (6) might be good for many data sets, but
it will not fit most processes in nature that exhibit exponential growth,
where the growth rate is proportional to the current function value.
Examples of such can be found in nuclear decay, the Weber-Fechner
law [11], and population growth. The existence of exponential pro-
cesses is also reflected in the way we represent floating point numbers:
mantissa and exponent. To get a log-scale mapping, we naively try to
approximate

h(c) = log(c) . (7)

Based on Eq. (3), we would calculate

f (c) =
logb(c)
dsingle · c

(8)

for any desired base b, but this would violate the requirements for
single dot columns, as log(1) = 0. To get f (1) = 1, we could change
the numerator in Eq. (8) to

logb(c)+dsingle .

This, in turn, would lead to other problems. For instance, with b = 2
and dsingle = 0.5, we would get larger dots in columns of two than in
single value stacks ( f (2) = 1.5). Instead, for logarithmic dot plots we
propose

logb(c+b−1) ·dsingle , (9)

as it fits all requirements when used with b ≥
√

5+1
2 (the golden ratio).

The supplemental material includes a table with varying dsingle and b
to illustrate the effect of these parameters on the layout.

The final issue is the choice of dsingle. This parameter should be
chosen according to the number of data samples, their distribution, the
size of the plot, and—very importantly—the targeted aspect ratio. We
iteratively optimize for dsingle: a plot is computed with the current value
of dsingle; this value is increased if the current aspect ratio is wider than
the target ratio and vice versa, until the target is reached.

4.4 Envelope
The above discussion holds for the mapping of height, i.e., a single
dimension. Now, the dot plots intrinsically link column height and
width because both dimensions are determined by the dot diameter. If
the diameter is scaled by a factor a, the actually covered area (i.e., the
area of the column) is scaled by a factor a2. Therefore, a square root
computation needs to be included in all mappings if the adjustment is
meant for areas, not just height.

Based on these observations, one can consider the limit case of a
very large number of dots and the envelope of the nonlinear dot plot.
For the case of root dot plots according to Eq. (6), the height of the
envelope scales with α(1−s)/(1+s) if the number of dots is multiplied by
α . Thus, the exponent s from the diameter scaling matches an exponent
of (1− s)/(1+ s) in the corresponding nonlinear histogram.

4.5 Anti-Aliasing
In general, dot plots can come with high demands regarding render qual-
ity because they consist of clearly defined dots with sharp boundaries.
Such boundaries in combination with some rather regular placement of
dots can lead to aliasing and moiré artifacts [13, 27]; see Fig. 4. The
main cause of moiré effects are small differences in dot sizes. These
accumulate along the height of neighboring columns and create virtual
tilted lines.

Typical anti-aliasing approaches from computer graphics work with
supersampling on the image plane, followed by low-pass filtering and
downsampling. Our solution adopts the same strategy but exploits the
special characteristics of dot plots. Low-pass filtering blurs the image,
i.e., the individual dots would eventually disappear and only a solid
colored area would appear. Other than generic anti-aliasing techniques,
we limit blurring to the vertical direction because individual columns

(a) Linear dot plot

(b) Strip dot plot (root plot with s = 1)

(c) Logarithmic histogram

Fig. 5. Visualizations of the multi-annual mean of maximum daily air temperatures of each month (in degrees Celsius). Image (a) is color-coded
according to the month J F M A M J J A S O N D . We use black dots in plot (b) to maximize the perceivable range of brightness.

should still be distinguishable. Furthermore, a few dots at the top and
bottom are left unchanged, as they play a key role in estimating the size
of individual dots and in comparing column heights.

We also decided on not blurring those columns that are not sur-
rounded by others because they do not add to the moiré effect. Finally,
we only start blurring after the dot count inside a column exceeds a
certain lower threshold (in our examples: 12) because otherwise, the
rendering does not create an area that is big enough for the effect to be
perceivable. Figures 4c and 4d show examples of anti-aliasing. Dots
in a blurred line are not countable anymore. However, as the height
of columns increases and the dot diameter decreases, it becomes more
and more difficult to make out individual dots for counting, anyway.
We use our anti-aliasing method with moderation in order to balance
advantages and side effects. The vertical lines in Fig. 4c are an example
of too aggressive blurring for the low dot density that trades the moiré
pattern for even worse optical effects, especially when rotating the
image. Therefore, we recommend anti-aliasing only for plots with very
small dots as in Fig. 4d.

4.6 Variants, Extensions, and Hybrid Visualizations
Just like conventional dot plots, our nonlinear generalization can be
widely applied to depict any kind of data distribution. Similarly, it can
be combined with other visual mappings to include further information
or emphasize certain aspects of the data.

One example is additional color mapping. In general, color plays
an important role in visualization because it can show additional data
attributes on top of the positional variables of the diagram. We argue
that color mapping is especially useful in the context of dot plots
because each single data sample generates exactly one dot, i.e., we

can have a direct mapping between data sample and color. To make
use of perceptual grouping by color (hue), similar colors should be
spatially grouped in the dot plot. We cannot change the layout between
the columns in the dot plot because they are driven by the distribution
of data values. However, we may modify the order of dots within a
column. Therefore, the dots in each column should be ordered vertically
according to the additional data attribute mapped to color. A typical
example is a chronological data distribution, i.e., a data set with samples
that do not only carry some data value but also a timestamp. Such time-
series distributions are best ordered chronologically in each dot column.
Another possible application of color is comparative visualization of
several data sets integrated in one dot plot: the color indicates the data
sources. The figures in Section 5 use such colored dot plots.

We mostly render our dot plots with the stacks aligned to the X-axis.
It is possible, however, to center the columns vertically and create dia-
grams with a horizontal symmetry axis (like Wilkinson’s symmetrical
dot plots [36]). Further variations can align dot stacks to the Y-axis.
This is especially useful when dealing with nominal data as it improves
the layout of labels and creates an output similar to Cleveland’s mul-
tiway dot plots [7]. In addition to layout and rendering variations, we
can combine different visualization methods. For instance, Fig. 7b
shows a symmetrical dot plot, overlaid by a box plot, whereas Fig. 3
adds strip charts to the X-axis. Such hybrid diagrams can help users
classify and identify data in meaningful ways, providing more insights.
Tukey’s suspended rootograms plot data in relation to a known density
distribution [31]. The same technique could be applied to the vertical
positioning of the dot stacks to show deviations, but would require
special care to adjust for areal distortions (see Section 4.4).
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(a) Log2 dot plot using dsingle = 795 (Shneiderman only) (b) Root dot plot using s = 0.6 and dsingle = 526

(c) Log2 dot plot using dsingle = 795 (d) Linear dot plot using dsingle ≈ 8.4

(e) Logarithmic histogram (f) Linear histogram

Fig. 6. Number of citations for papers by Ben Shneiderman , William S. Cleveland , Leland Wilkinson , and William E. Lorensen . Each dot
represents one of 1,463 publications from these authors.

5 EXAMPLES

We demonstrate nonlinear dot plots for typical examples of real-world
data. These contain frequencies of varying range. We include compar-
isons to histograms and linear dot plots to examine different character-
istics.

5.1 Distribution of Air Temperature

Air temperature has a direct impact on our daily life, but it is also
related to issues of global climate change. Therefore, we pick this
application as our first example. The data was provided by the German
meteorological service (Deutscher Wetterdienst)2. Our data set contains
the aggregated mean of the maximum daily air temperature by weather
station and month for the years 1961 to 1990. The stations are labeled
using the identifiers supplied by the World Meteorological Organization
(WMO). This data set provides a total of 9685 data samples for 875
weather stations worldwide; temperatures are in degrees Celsius.

Visualizing this data with the plots in Figs. 1 and 5, one can im-
mediately see that the distribution is unimodal and has its maximum
between 31 to 32 degrees. While mean temperatures down to around
−30 degrees are still quite common, only single instances of tempera-
tures at or below −31 degrees can be observed. Temperatures between
16 and 29 degrees are almost evenly distributed, forming a plateau

2https://cdc.dwd.de/catalogue/srv/en/home

in the linear dot plot. This plateau is also visible in the logarithmic
histogram and the root dot plot, albeit less noticeable. The nonlinear
plots outperform their linear counterparts when we focus on less dense
areas of the plots. Figures 1 and 5c both show minimum and maximum
values (outliers) clearly, but the dot plot also allows counting them,
whereas the histogram would need a fine-grained vertical axis to do
so, which would lead to overplotting. The extreme, strip chart-like
visualization in Figure 5b only shows the outliers clearly but turns the
dense regions into light-gray areas. Cross-referencing the temperature
data with the WMO database yields additional geographic information.
Picking data points in nonlinear dot plots for cross-referencing is very
simple because of the one-to-one relationship between dots and data
points and since the low-frequency points are rendered as quite large
dots.

While the two nonlinear visualizations look similar at first glance,
the dot plot provides more detail in dense areas. The histogram cannot
provide such a view, as all its bins are all equal in width. Figure 1 also
exhibits some gaps in the stacks (for instance near 7 ◦C), which contrast
the tightly packed neighboring areas. This is due to the characteristics
of the data source: the temperatures are rounded to a single decimal
place and there are many data points with the same value. The value
density in this area is too low to create high and narrow columns, but at
the same time, it is too high to place a wider column at each decimal of
a degree. Therefore, the layout algorithm cannot create a tightly packed
field of uniform columns, which leads to visible gaps.

To encode more information we colored the individual dots in Figs. 1
and 5a according to the four seasons. Seasons are different for Earth’s
northern and southern hemisphere. We compensated for that by in-
troducing a phase-shift of six months for weather stations below the
equator. Using this colorization with the nonlinear dot plot, it is imme-
diately noticeable that higher temperatures tend to occur in summer,
while the lower ones are predominantly measured in winter. That is no
surprise; however, the tendency is not so obvious when looking at the
linear dot plot. This effect can be explained by the unimodal sample dis-
tribution that has a lower value frequency at the outer edges and the bias
toward outliers in Fig. 1. It would be possible to color the histograms
analogously to the dot plots, by subdividing the bars. However, there
is no appropriate color-coding for the logarithmic histogram because
there is a conflict between linear (proportional) splitting of individual
bars versus the overall logarithmic scaling. There is no such ambiguity
with the colored dot plots, as the individual stacks are always linear,
giving the users an impression of the distribution of sample categories
within the stacks.

5.2 Citation Statistics

Our next example shows bibliometric data in the form of citation statis-
tics. The h index [15] is a popular indicator of publication impact by
an author, heavily aggregating data of all papers into a single number.
In contrast, visualizing the complete citation data presents a challenge,
as the number of citations may vary extremely per author and paper:
there tend to be few publications with a big impact (i.e., many refer-
ences) and many papers that hardly anyone notices (i.e., little to no
references). Therefore, we obtain a high concentration in the frequency
plot near zero and some outliers with many citations, forming a long
tail. Since these outliers are the most relevant publications, the visu-
alization should represent them accordingly. However, even the bulk
of low-citation papers is interesting because it indicates publication
productivity.

For illustration purposes, we use citation data of four well-known
researchers (Shneiderman, Cleveland, Wilkinson, and Lorensen), ob-
tained from Google Scholar3 through the Publish or Perish soft-
ware [14] (withouth any data cleansing). Figure 6 shows the results. In
6a, we plotted 1045 publications by Ben Shneiderman. His most cited
work is “Designing the user interface: strategies for effective human-
computer interaction” (14,309). There are six additional publications
that are clearly distinguishable, but most of the other papers seem to
have one thousand or fewer citations.

To compare his citation data to that of the other three authors, we
add their data and use color-mapped dots. By the dominant dark blue
color in the nonlinear dot plots in (b) or (c), we can see immediately
that Shneiderman has the largest number of publications. Dots below
about 1,000 citations become too small to distinguish individually,
but their nonlinearly scaled column heights can still be perceived;
therefore, we can obtain the approximate frequencies and compare
them between authors. The much fewer papers with high citation
counts are large and clearly visible. From these dot plots, we can see
that all four authors have publications with 9,000 or more references.
Bill Lorensen even has two papers with very high citation counts:
“Marching cubes: A high resolution 3D surface construction algorithm”
(13,495) and “Object-oriented modeling and design” (11,147). Leland
Wilkinson’s most cited work is “SYSTAT for Windows: statistics,
graphics, data, getting started, version 5” (9,914). The red dot at 9,017
represents William Cleveland’s “Robust locally weighted regression
and smoothing scatterplots”.

In contrast, linear plots (Figs. 6d and 6f) are not well suited for such
high dynamic range data, as they cannot show any useful information
about the important long tail. The logarithmic histogram in (e) renders
the highly referenced publications as bars. This allows for a relatively
accurate estimation of the citation counts, but does not provide any
method of showing and comparing the authors.

3https://scholar.google.com

2 31
PT SEAT IS NO

(a) Root dot plot with annotations for clusters and country names

(b) Symmetric root dot plot with box plot overlay

(c) Linear histogram

Fig. 7. Percentage of electricity produced from renewable energy sources
versus total consumed electricity of 30 European countries from 2004 to
2014. There is a value for each country and year. Dot plots use a color
scale to represent the value’s year: '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 .

5.3 Renewable Energy

Our third example combines dot plots with box plots to address the way
in which electricity is produced. The European Commission provides
the general public with access to statistical data through their website
called eurostat4. It includes information on the amount and type of
energy produced in each country of the European Union (EU) as well as
Norway and Iceland. The data set “tsdcc330”5 compares the generated
renewable electricity with the total consumed amount on a yearly basis,
from 2004 to 2014.

Visualizing this data set with dot plots and histograms, three groups
of values stick out that can be interpreted by combining the use of plots
with the tabular representation of the source data. As Fig. 7 and more
specifically cluster 1 in (a) show, there is a relatively high data density
near 0%. Temporal information from the dot plots shows that it must
have been from countries that have only recently started producing
electrical power from renewable sources in relevant amounts. This
conclusion is evident because there are stacks around zero percent, but
red dots (indicating the data set’s last year) are no longer present.

A second cluster from Fig. 7a is less visible in the histogram (c).
The red dots indicate that it is composed of values of approximately
three countries. Assuming a general trend of increasing the amount of
renewable energy (in order to meet climate protection goals), it seems
probable that the country with the leftmost red dot has the lowest share
of the cluster. A look at the tabular data confirms this hypothesis: a
single dot is contributed by Portugal, while Austria and Sweden make
up the remainder of the cluster.

Cluster 3 from Fig. 7a is well separated from most of the other
values and is well discernible in all three plots. The overlaid box plot
in (b) explicitly classifies the entire cluster as consisting of outliers. At
first glance, there are two countries that mainly use renewable energy.
A closer comparison and dot count show that each color is present
exactly twice, further indicating that all values are only from those
two countries. Cross-referencing with tabular data identifies them as
Norway and Iceland.

4http://ec.europa.eu/eurostat/web/main/home
5http://ec.europa.eu/eurostat/tgm/download.do?tab=table&plugin=1&

language=de&pcode=tsdcc330
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(a) Log2 dot plot using dsingle = 795 (Shneiderman only) (b) Root dot plot using s = 0.6 and dsingle = 526

(c) Log2 dot plot using dsingle = 795 (d) Linear dot plot using dsingle ≈ 8.4

(e) Logarithmic histogram (f) Linear histogram

Fig. 6. Number of citations for papers by Ben Shneiderman , William S. Cleveland , Leland Wilkinson , and William E. Lorensen . Each dot
represents one of 1,463 publications from these authors.

5 EXAMPLES

We demonstrate nonlinear dot plots for typical examples of real-world
data. These contain frequencies of varying range. We include compar-
isons to histograms and linear dot plots to examine different character-
istics.

5.1 Distribution of Air Temperature

Air temperature has a direct impact on our daily life, but it is also
related to issues of global climate change. Therefore, we pick this
application as our first example. The data was provided by the German
meteorological service (Deutscher Wetterdienst)2. Our data set contains
the aggregated mean of the maximum daily air temperature by weather
station and month for the years 1961 to 1990. The stations are labeled
using the identifiers supplied by the World Meteorological Organization
(WMO). This data set provides a total of 9685 data samples for 875
weather stations worldwide; temperatures are in degrees Celsius.

Visualizing this data with the plots in Figs. 1 and 5, one can im-
mediately see that the distribution is unimodal and has its maximum
between 31 to 32 degrees. While mean temperatures down to around
−30 degrees are still quite common, only single instances of tempera-
tures at or below −31 degrees can be observed. Temperatures between
16 and 29 degrees are almost evenly distributed, forming a plateau

2https://cdc.dwd.de/catalogue/srv/en/home

in the linear dot plot. This plateau is also visible in the logarithmic
histogram and the root dot plot, albeit less noticeable. The nonlinear
plots outperform their linear counterparts when we focus on less dense
areas of the plots. Figures 1 and 5c both show minimum and maximum
values (outliers) clearly, but the dot plot also allows counting them,
whereas the histogram would need a fine-grained vertical axis to do
so, which would lead to overplotting. The extreme, strip chart-like
visualization in Figure 5b only shows the outliers clearly but turns the
dense regions into light-gray areas. Cross-referencing the temperature
data with the WMO database yields additional geographic information.
Picking data points in nonlinear dot plots for cross-referencing is very
simple because of the one-to-one relationship between dots and data
points and since the low-frequency points are rendered as quite large
dots.

While the two nonlinear visualizations look similar at first glance,
the dot plot provides more detail in dense areas. The histogram cannot
provide such a view, as all its bins are all equal in width. Figure 1 also
exhibits some gaps in the stacks (for instance near 7 ◦C), which contrast
the tightly packed neighboring areas. This is due to the characteristics
of the data source: the temperatures are rounded to a single decimal
place and there are many data points with the same value. The value
density in this area is too low to create high and narrow columns, but at
the same time, it is too high to place a wider column at each decimal of
a degree. Therefore, the layout algorithm cannot create a tightly packed
field of uniform columns, which leads to visible gaps.

To encode more information we colored the individual dots in Figs. 1
and 5a according to the four seasons. Seasons are different for Earth’s
northern and southern hemisphere. We compensated for that by in-
troducing a phase-shift of six months for weather stations below the
equator. Using this colorization with the nonlinear dot plot, it is imme-
diately noticeable that higher temperatures tend to occur in summer,
while the lower ones are predominantly measured in winter. That is no
surprise; however, the tendency is not so obvious when looking at the
linear dot plot. This effect can be explained by the unimodal sample dis-
tribution that has a lower value frequency at the outer edges and the bias
toward outliers in Fig. 1. It would be possible to color the histograms
analogously to the dot plots, by subdividing the bars. However, there
is no appropriate color-coding for the logarithmic histogram because
there is a conflict between linear (proportional) splitting of individual
bars versus the overall logarithmic scaling. There is no such ambiguity
with the colored dot plots, as the individual stacks are always linear,
giving the users an impression of the distribution of sample categories
within the stacks.

5.2 Citation Statistics

Our next example shows bibliometric data in the form of citation statis-
tics. The h index [15] is a popular indicator of publication impact by
an author, heavily aggregating data of all papers into a single number.
In contrast, visualizing the complete citation data presents a challenge,
as the number of citations may vary extremely per author and paper:
there tend to be few publications with a big impact (i.e., many refer-
ences) and many papers that hardly anyone notices (i.e., little to no
references). Therefore, we obtain a high concentration in the frequency
plot near zero and some outliers with many citations, forming a long
tail. Since these outliers are the most relevant publications, the visu-
alization should represent them accordingly. However, even the bulk
of low-citation papers is interesting because it indicates publication
productivity.

For illustration purposes, we use citation data of four well-known
researchers (Shneiderman, Cleveland, Wilkinson, and Lorensen), ob-
tained from Google Scholar3 through the Publish or Perish soft-
ware [14] (withouth any data cleansing). Figure 6 shows the results. In
6a, we plotted 1045 publications by Ben Shneiderman. His most cited
work is “Designing the user interface: strategies for effective human-
computer interaction” (14,309). There are six additional publications
that are clearly distinguishable, but most of the other papers seem to
have one thousand or fewer citations.

To compare his citation data to that of the other three authors, we
add their data and use color-mapped dots. By the dominant dark blue
color in the nonlinear dot plots in (b) or (c), we can see immediately
that Shneiderman has the largest number of publications. Dots below
about 1,000 citations become too small to distinguish individually,
but their nonlinearly scaled column heights can still be perceived;
therefore, we can obtain the approximate frequencies and compare
them between authors. The much fewer papers with high citation
counts are large and clearly visible. From these dot plots, we can see
that all four authors have publications with 9,000 or more references.
Bill Lorensen even has two papers with very high citation counts:
“Marching cubes: A high resolution 3D surface construction algorithm”
(13,495) and “Object-oriented modeling and design” (11,147). Leland
Wilkinson’s most cited work is “SYSTAT for Windows: statistics,
graphics, data, getting started, version 5” (9,914). The red dot at 9,017
represents William Cleveland’s “Robust locally weighted regression
and smoothing scatterplots”.

In contrast, linear plots (Figs. 6d and 6f) are not well suited for such
high dynamic range data, as they cannot show any useful information
about the important long tail. The logarithmic histogram in (e) renders
the highly referenced publications as bars. This allows for a relatively
accurate estimation of the citation counts, but does not provide any
method of showing and comparing the authors.

3https://scholar.google.com
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(a) Root dot plot with annotations for clusters and country names

(b) Symmetric root dot plot with box plot overlay
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Fig. 7. Percentage of electricity produced from renewable energy sources
versus total consumed electricity of 30 European countries from 2004 to
2014. There is a value for each country and year. Dot plots use a color
scale to represent the value’s year: '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 .

5.3 Renewable Energy

Our third example combines dot plots with box plots to address the way
in which electricity is produced. The European Commission provides
the general public with access to statistical data through their website
called eurostat4. It includes information on the amount and type of
energy produced in each country of the European Union (EU) as well as
Norway and Iceland. The data set “tsdcc330”5 compares the generated
renewable electricity with the total consumed amount on a yearly basis,
from 2004 to 2014.

Visualizing this data set with dot plots and histograms, three groups
of values stick out that can be interpreted by combining the use of plots
with the tabular representation of the source data. As Fig. 7 and more
specifically cluster 1 in (a) show, there is a relatively high data density
near 0%. Temporal information from the dot plots shows that it must
have been from countries that have only recently started producing
electrical power from renewable sources in relevant amounts. This
conclusion is evident because there are stacks around zero percent, but
red dots (indicating the data set’s last year) are no longer present.

A second cluster from Fig. 7a is less visible in the histogram (c).
The red dots indicate that it is composed of values of approximately
three countries. Assuming a general trend of increasing the amount of
renewable energy (in order to meet climate protection goals), it seems
probable that the country with the leftmost red dot has the lowest share
of the cluster. A look at the tabular data confirms this hypothesis: a
single dot is contributed by Portugal, while Austria and Sweden make
up the remainder of the cluster.

Cluster 3 from Fig. 7a is well separated from most of the other
values and is well discernible in all three plots. The overlaid box plot
in (b) explicitly classifies the entire cluster as consisting of outliers. At
first glance, there are two countries that mainly use renewable energy.
A closer comparison and dot count show that each color is present
exactly twice, further indicating that all values are only from those
two countries. Cross-referencing with tabular data identifies them as
Norway and Iceland.

4http://ec.europa.eu/eurostat/web/main/home
5http://ec.europa.eu/eurostat/tgm/download.do?tab=table&plugin=1&

language=de&pcode=tsdcc330



624  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018

Due to the lack of countability, the regular histogram was not as
useful in arriving at these conclusions. The dot plots show individual
data values that prompt for a more directed research into details.

6 EXPERT REVIEW

To evaluate nonlinear dot plots, we conducted an expert review [28].
We recruited four experts from the field of visualization and computer
graphics from our university. All of them were PhD students with
several years of research experience. Our evaluation focused on the
visualization itself, not the interactive tool used to generate the plots.
Therefore, we presented each of the experts with static printouts on
paper. These included four different kinds of visualizations: linear dot
plots and histograms, nonlinear dot plots, and logarithmic histograms.
Each review took approximately 30 minutes, during which an operator
engaged the experts in a dialog (structured by a previously prepared
sequence of questions) and took notes.

In the beginning of the review, the expert was introduced to the
concept of dot plots and specifically to the nonlinear dot plots and
stack sizes. Then, the expert was asked to work with all four plot
types, each applied to three different examples of time-series data sets:
(1) “FOL acc 1 1” from the MobiFall6 [32, 33] data set, which con-
tains axis-dependent accelerations of people falling, measured with
smartphone devices. The visualizations showed 812 samples. All
plots were rendered in black, i.e., no additional color mapping was
applied. (2) The energy data set discussed in Section 5.3. The dot plots
were colored as in Figs. 7a and 7b, whereas the histograms remained
black. (3) Temperature data showing minimum daily temperatures as in
Fig. 1. In this case, the dot plots were also colored, whereas histograms
remained black. The review session concluded with collecting the ex-
pert’s general feedback and remarks on the different data representation
methods. Although we compare colored and black visualizations, we
feel this is a suitable study setup, because it makes use of the most
important advantage of dot plots (countability) and we would not want
to compare techniques without their main features.

We first summarize our main observations made while the experts
worked with the visualizations. For data set (1), all experts recognized
a sharp peak near the number 10, but no one made a connection to the
gravitational acceleration of approximately 9.81 ms−2. An expert with
a pronounced background in statistics noticed the connection between
dot plots and histograms, and found the analogy between dot stacks
and narrow bins in high sample frequency areas. In low-density areas,
however, the same visualizations diverged as the number of stacks and
bars did not match. This was due to the bin limits that separated samples
into a bar each, while nonlinear dot plots joined multiple values into low
stacks. Everyone noticed the lack of perceivable bars in low-frequency
areas in linear histograms (due to rasterization), while some were able
to discern individual circles in linear dot plots.

Experts were first introduced to a color scale for the dots when
presented with the energy data. The first objective was to find out how
many countries were represented in the plot. This was to check whether
they understood the meaning of a single dot and the color scale. One
expert with much experience in statistics made the connection himself:
the number of countries is equal to the number of red dots. The others
needed additional explanations but eventually, everyone got a grasp
of the concept and answered the next question correctly: There were
no more countries without electricity from renewable energy sources
in the last year. When asked whether the data presented outliers, all
experts mentioned the cluster around 100 % and that at least in the
last year, there were only two countries. The small difference between
printed colors and the plot’s small size did not allow them to compare
individual dots and come to the conclusion that the cluster always
contained two dots per year.

The third group of visualizations came with estimation tasks. The
experts should determine the 25, 50, and 75 percentiles in each plot
separately. Everyone reported that it was much easier with linear
representations than with nonlinear ones, as they had to compensate
representational distortions. This is to be expected and in line with

6http://www.bmi.teicrete.gr

previous findings [1, 4, 8, 16, 30]. The estimation results reflected the
expert’s statements, although the number of participants was too small
to achieve statistical relevance. Two experts with a background in
statistics were able to compensate the distortions more effectively and
arrived at virtually the same results for each visualization.

After having gone through three data sets, we asked the experts
which would be the first visualization (out of the four available) they
would use on completely unknown data. Three preferred the linear
histogram, mostly because they already knew it from previous work
and were quite familiar with it. One preferred the nonlinear dot plot
because outliers were better visible, with and without color mapping.

Finally, we asked for general feedback and remarks on the differ-
ent data representation methods. The consensus was that dot plots
are aesthetically pleasing, especially when combined with color map-
ping. The nonlinear representation allows for identifying and counting
outliers. However, there is the drawback of nonlinear projections, as
they introduce distortions for which the observer has to compensate.
The experts were intrigued by the possibilities of color mapping and
counting individual data samples, and mentioned that it allowed for the
extraction of more details from the visualizations.

7 CONCLUSION AND FUTURE WORK

We have introduced nonlinear dot plots—a new type of diagram to
show the distribution of data. Nonlinear dot plots combine the ad-
vantages of conventional dot plots and nonlinear scaling known from
log-scale histograms. Therefore, nonlinear dot plots are well prepared
to visualize countable data samples for data sets with a large range of
frequencies. With our new type of plot, we are able to visualize data
distributions with well above a thousand individual values; still, we
can easily discover outliers because the single data points are drawn
as large dots in areas of few data points. In our experience, linear dot
plots work just as well if the data sets are small (less than 1,000 values)
and the value frequency stays within a small range.

Computing the layout becomes more difficult once we generalize
conventional dot plots to nonlinear ones. Therefore, we have presented
a new two-way sweep algorithm that produces intermediate dot plots
by traversing the data domain in upward and downward directions;
these intermediate layouts are combined to obtain the final plot. We
have also addressed the problem of aliasing moiré effects by devising
a specific low-pass filtering method that performs controlled vertical
blurring along inner parts of the dot columns.

Nonlinear dot plots have a wide range of possible uses, similar to
other frequency plots. We have also demonstrated how they can be
combined with other visualization elements, including color-coding
and hybrid overlays. Some real-world examples and an expert review
have demonstrated the utility and characteristics of nonlinear dot plots.
It should be noted that the idea of nonlinearly scaling dot sizes is more
fundamental than the two-way sweep algorithm we presented. In fact,
there might be future improvements for the actual layout algorithm.
For example, iterative approaches like simulated annealing or genetic
algorithms might also prove to give satisfactory layout results. Just
as node-link diagrams of graphs can be laid out by force-directed
methods [12, 19, 20] with randomization elements, the creation of
columns could be implemented by shifting dots, merging, and splitting
columns.

We currently only use color to group the dots in a column. Further
development could result in other techniques for such comparative
dot plots. As another element of future work, we plan to conduct a
controlled user study with eye-tracking to obtain objective measures for
the differences between nonlinear dot plots and other frequency plots.
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Due to the lack of countability, the regular histogram was not as
useful in arriving at these conclusions. The dot plots show individual
data values that prompt for a more directed research into details.

6 EXPERT REVIEW

To evaluate nonlinear dot plots, we conducted an expert review [28].
We recruited four experts from the field of visualization and computer
graphics from our university. All of them were PhD students with
several years of research experience. Our evaluation focused on the
visualization itself, not the interactive tool used to generate the plots.
Therefore, we presented each of the experts with static printouts on
paper. These included four different kinds of visualizations: linear dot
plots and histograms, nonlinear dot plots, and logarithmic histograms.
Each review took approximately 30 minutes, during which an operator
engaged the experts in a dialog (structured by a previously prepared
sequence of questions) and took notes.

In the beginning of the review, the expert was introduced to the
concept of dot plots and specifically to the nonlinear dot plots and
stack sizes. Then, the expert was asked to work with all four plot
types, each applied to three different examples of time-series data sets:
(1) “FOL acc 1 1” from the MobiFall6 [32, 33] data set, which con-
tains axis-dependent accelerations of people falling, measured with
smartphone devices. The visualizations showed 812 samples. All
plots were rendered in black, i.e., no additional color mapping was
applied. (2) The energy data set discussed in Section 5.3. The dot plots
were colored as in Figs. 7a and 7b, whereas the histograms remained
black. (3) Temperature data showing minimum daily temperatures as in
Fig. 1. In this case, the dot plots were also colored, whereas histograms
remained black. The review session concluded with collecting the ex-
pert’s general feedback and remarks on the different data representation
methods. Although we compare colored and black visualizations, we
feel this is a suitable study setup, because it makes use of the most
important advantage of dot plots (countability) and we would not want
to compare techniques without their main features.

We first summarize our main observations made while the experts
worked with the visualizations. For data set (1), all experts recognized
a sharp peak near the number 10, but no one made a connection to the
gravitational acceleration of approximately 9.81 ms−2. An expert with
a pronounced background in statistics noticed the connection between
dot plots and histograms, and found the analogy between dot stacks
and narrow bins in high sample frequency areas. In low-density areas,
however, the same visualizations diverged as the number of stacks and
bars did not match. This was due to the bin limits that separated samples
into a bar each, while nonlinear dot plots joined multiple values into low
stacks. Everyone noticed the lack of perceivable bars in low-frequency
areas in linear histograms (due to rasterization), while some were able
to discern individual circles in linear dot plots.

Experts were first introduced to a color scale for the dots when
presented with the energy data. The first objective was to find out how
many countries were represented in the plot. This was to check whether
they understood the meaning of a single dot and the color scale. One
expert with much experience in statistics made the connection himself:
the number of countries is equal to the number of red dots. The others
needed additional explanations but eventually, everyone got a grasp
of the concept and answered the next question correctly: There were
no more countries without electricity from renewable energy sources
in the last year. When asked whether the data presented outliers, all
experts mentioned the cluster around 100 % and that at least in the
last year, there were only two countries. The small difference between
printed colors and the plot’s small size did not allow them to compare
individual dots and come to the conclusion that the cluster always
contained two dots per year.

The third group of visualizations came with estimation tasks. The
experts should determine the 25, 50, and 75 percentiles in each plot
separately. Everyone reported that it was much easier with linear
representations than with nonlinear ones, as they had to compensate
representational distortions. This is to be expected and in line with

6http://www.bmi.teicrete.gr

previous findings [1, 4, 8, 16, 30]. The estimation results reflected the
expert’s statements, although the number of participants was too small
to achieve statistical relevance. Two experts with a background in
statistics were able to compensate the distortions more effectively and
arrived at virtually the same results for each visualization.

After having gone through three data sets, we asked the experts
which would be the first visualization (out of the four available) they
would use on completely unknown data. Three preferred the linear
histogram, mostly because they already knew it from previous work
and were quite familiar with it. One preferred the nonlinear dot plot
because outliers were better visible, with and without color mapping.

Finally, we asked for general feedback and remarks on the differ-
ent data representation methods. The consensus was that dot plots
are aesthetically pleasing, especially when combined with color map-
ping. The nonlinear representation allows for identifying and counting
outliers. However, there is the drawback of nonlinear projections, as
they introduce distortions for which the observer has to compensate.
The experts were intrigued by the possibilities of color mapping and
counting individual data samples, and mentioned that it allowed for the
extraction of more details from the visualizations.

7 CONCLUSION AND FUTURE WORK

We have introduced nonlinear dot plots—a new type of diagram to
show the distribution of data. Nonlinear dot plots combine the ad-
vantages of conventional dot plots and nonlinear scaling known from
log-scale histograms. Therefore, nonlinear dot plots are well prepared
to visualize countable data samples for data sets with a large range of
frequencies. With our new type of plot, we are able to visualize data
distributions with well above a thousand individual values; still, we
can easily discover outliers because the single data points are drawn
as large dots in areas of few data points. In our experience, linear dot
plots work just as well if the data sets are small (less than 1,000 values)
and the value frequency stays within a small range.

Computing the layout becomes more difficult once we generalize
conventional dot plots to nonlinear ones. Therefore, we have presented
a new two-way sweep algorithm that produces intermediate dot plots
by traversing the data domain in upward and downward directions;
these intermediate layouts are combined to obtain the final plot. We
have also addressed the problem of aliasing moiré effects by devising
a specific low-pass filtering method that performs controlled vertical
blurring along inner parts of the dot columns.

Nonlinear dot plots have a wide range of possible uses, similar to
other frequency plots. We have also demonstrated how they can be
combined with other visualization elements, including color-coding
and hybrid overlays. Some real-world examples and an expert review
have demonstrated the utility and characteristics of nonlinear dot plots.
It should be noted that the idea of nonlinearly scaling dot sizes is more
fundamental than the two-way sweep algorithm we presented. In fact,
there might be future improvements for the actual layout algorithm.
For example, iterative approaches like simulated annealing or genetic
algorithms might also prove to give satisfactory layout results. Just
as node-link diagrams of graphs can be laid out by force-directed
methods [12, 19, 20] with randomization elements, the creation of
columns could be implemented by shifting dots, merging, and splitting
columns.

We currently only use color to group the dots in a column. Further
development could result in other techniques for such comparative
dot plots. As another element of future work, we plan to conduct a
controlled user study with eye-tracking to obtain objective measures for
the differences between nonlinear dot plots and other frequency plots.
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