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Abstract—Search indices are fundamental building blocks of
many systems, and there is great interest in running them on
encrypted data. Unfortunately, many known schemes that enable
search queries on encrypted data achieve efficiency at the expense
of security, as they reveal access patterns to the encrypted data.

In this paper we present Oblix, a search index for encrypted
data that is oblivious (provably hides access patterns), is dynamic
(supports inserts and deletes), and has good efficiency.

Oblix relies on a combination of novel oblivious-access tech-
niques and recent hardware enclave platforms (e.g., Intel SGX).
In particular, a key technical contribution is the design and
implementation of doubly-oblivious data structures, in which the
client’s accesses to its internal memory are oblivious, in addition
to accesses to its external memory at the server. These algorithms
are motivated by hardware enclaves like SGX, which leak access
patterns to both internal and external memory.

We demonstrate the usefulness of Oblix in several applications:
private contact discovery for Signal, private retrieval of public
keys for Key Transparency, and searchable encryption that hides
access patterns and result sizes.

I. INTRODUCTION

A search (or inverted) index is a fundamental building block
of many systems, and is often used for sensitive data such
as personal or corporate information. A rich line of work
[8, 12, 11, 17, 33, 36, 39, 40, 51, 52, 62, 63] aims to protect
such sensitive information by encrypting it while still allowing
search on the encrypted data. In this model, when a client
wishes to retrieve documents matching a certain keyword, the
client generates a search token for the keyword and sends it
to the server; the token hides information about the keyword,
but enables the server to identify all matching (encrypted)
documents and return them to the client, who can then decrypt.

Despite significant progress in constructing such encrypted
search indices, known schemes with good efficiency suffer from
an important limitation, namely, they leak access patterns. The
exact leakage varies from scheme to scheme, but in its basic
form it enables identification of which (encrypted) documents
match a keyword, for each searched keyword (this is leakage
profile L1 in the categorization of Cash et al. [10]).

A recent line of attacks [4, 10, 26, 30, 34, 42, 53, 79] has
demonstrated that such access pattern leakage can be used
to recover significant information about data in encrypted
indices. For example, some attacks can recover all search
queries [10, 34, 42, 79] or a significant portion of the content
of encrypted documents [4, 26]. Even hiding access patterns
can be insufficient: some attacks cleverly use the number of
documents that match a search query [10, 37], so it is important
to hide the result size as well. Clearly, preventing such leakage
would drastically improve security of encrypted search indices.
The go-to method to hide access patterns is Oblivious RAM
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Figure 1: Component stack of Oblix. Grey blocks are components that exist
before Oblix, and white blocks are Oblix’s contributions.

(ORAM) [27], but this is an expensive tool [10, 34, 50], and
thus few prior schemes try to hide access patterns [24], and
even fewer hide result sizes.

In this paper, we present Oblix (OBLivious IndeX), an
efficient search index that does not leak access patterns and
enables hiding the result size of searches. In particular, Oblix
protects against all the aforementioned attacks. At the same
time, Oblix supports updates (inserts and deletes) as well
as multiple (potentially malicious) users, properties that are
challenging to achieve for many prior schemes. While hardware
enclaves such as Intel SGX [45] are a key enabler for Oblix,
they are far from sufficient, and Oblix leverages a combination
of novel cryptographic protocols and systems techniques. Fig. 1
shows the logical layout of our techniques, as well as the three
applications that we demonstrate on top of Oblix.

A. Summary of techniques

We discuss the challenges that arose in designing our system,
and the techniques that we used to overcome them. Recall that
Path ORAM [64] (a popular and relatively efficient ORAM
scheme) consists of an ORAM client that stores the secret
key and an ORAM server holding the bulk of the data; the
ORAM client maintains a position map, mapping each item in
the search index to a location in the oblivious database, and a
stash of temporary values; see Section III-A for details.

Challenge: high round complexity. The position map has
size that is linear in the number of entries in the index. In our
applications (e.g., contact discovery for Signal), clients cannot
store it. The standard solution is to store the position map at
the ORAM server in another ORAM instance with its own
(smaller) position map, and recurse until the position map is
small enough for the client to store. However, this solution
implies that each index lookup requires a logarithmic (in the
index size) number of requests, and hence roundtrips, to the
server. These roundtrips severely degrade latency.
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Approach: Our first insight is that, by using recent hardware
enclave technology (such as Intel SGX [45]), we can improve
latency by reducing network roundtrips, as we now explain. At
the server, we place the ORAM client inside the enclave and
place the ORAM server in unprotected memory outside the
enclave. All accesses to the ORAM server are still oblivious, but
interaction between the ORAM client and server happens within
a single machine, and not over the network. In Section I-B,
we explain that hardware enclaves also let us support multiple
users. Unfortunately, simply “throwing the ORAM client inside
the enclave” is far from sufficient and, in fact, is insecure.

Challenge: hardware enclaves are not oblivious. Recent
attacks have shown that hardware enclaves like Intel SGX leak
access patterns in several ways (see Fig. 2).

First, prior work [69, 75] shows that an operating system
can observe page-level access patterns and uses this leakage
to recover encrypted document contents from the enclave.
Second, when the data grows large, it needs to be stored
on secondary storage. An attacker can then observe (page-
level) access patterns to this secondary storage. Third, an
attacker could mount an affordable hardware attack that taps
into the memory bus and reads memory addresses coming
from an enclave. We note that recent work aiming to prevent a
compromised operating system from mounting the page-fault
attack [59] does not address the second and third attacks.

In our setting, the above leakage is problematic because the
security guarantees of ORAM rely on the attacker not seeing
the access patterns of the ORAM client to its internal memory.
For Path ORAM, this means that if the attacker sees accesses
to the client’s position map or stash, it can infer access patterns
to the ORAM server, defeating the purpose of using ORAM.

Approach: We devise a two-part solution to address this
challenge. First, we avoid the need for a position map by
constructing an oblivious data structure (ODS) [74] that embeds
the position map into the data structure itself.

Second, we make the ORAM client’s accesses to its internal
state oblivious via novel oblivious algorithms. We call the
resulting ORAM scheme doubly oblivious because not only
are the accesses to the ORAM server oblivious, but so are the
accesses to the ORAM client’s internal memory. Thus, even
if the attacker observes access patterns to the client’s internal
memory, it learns nothing about the data. We design efficient
oblivious algorithms for stash eviction and for initializing the
ORAM server. These algorithms were challenging to design
because the ORAM client makes complex accesses to the stash
and (during initial setup) to the ORAM storage, and cannot rely
on any memory location being unobservable to the attacker. We
deem our doubly-oblivious algorithms for Path ORAM (called
DORAM), and also for the ODS framework (called DODS), to
be of independent interest.

Challenge: hide result sizes. Even if we hide access patterns,
we still need to hide the size of the result set for a search query.
Indeed, this information can be used to learn the contents of a
query or its result set [10, 37]. The simplistic solution is to pad
each result size to a worst-case upper bound, but this is too

expensive for many applications. For instance, when searching
documents, while most keywords might have a modest number
of matches, some popular keywords will have a large number
of matches, forcing the worst-case upper bound to be large. In
fact, Naveed [50] shows that padding to the worst-case size can
be more expensive than simply streaming the entire database
to the client, obviating the need for ORAM.
Approach: The insight is to examine how the user sees
search results in regular systems today. Many applications
do not display to users all results at once (think of web or
email searches), but only a page of r results, for some pre-
determined m (say, 20). To make these r results meaningful,
these applications show the “best” r results according to
some order of interest (relevance, chronological, or others
[54]). Ordering the results of a search query presupposes
embedding support for scoring in the search index, which is not
traditionally captured by searchable encryption (SE) schemes.
We deviate from this tradition and explicitly model scores in
the interface of our search index, which supports operations on
a scored inverted index data structure whose searches return the
r highest-scoring search results. Doing so enables us to avoid
expensive worst-case padding without compromising security,
while providing a meaningful correctness guarantee.
Challenge: ordered lists, efficiently and obliviously. We
need to design an oblivious data structure that can (efficiently)
search ordered lists, and support insertions and deletions.
Simply mapping the multimap [k ⇒ v1, v2, . . . , vn] to a regular
oblivious map ([55, 74]) [(k, 1) ⇒ v1, . . . , (k, n) ⇒ vn] is
problematic because inserts require shifting O(n) values.
Approach: We design a doubly-oblivious sorted multimap
(DOSM), a specialized data structure that efficiently supports
searching ranges in sorted lists, insertions, and deletions.
First, we design a suitable tree data structure, where inser-
tions/deletions run in time O(log n) instead of O(n) as above,
that is compatible with the ODS framework. Next, to achieve
double-obliviousness, one might consider simply employing our
DODS in place of ODS. However, ODS uses caching to fetch
tree nodes more efficiently. Replicating this feature without
leaking information about cache contents implies performing a
dummy ORAM access upon a cache hit (to give the impression
of a cache miss), thus defeating the purpose of the cache.
Instead, we carefully analyze our oblivious tree algorithms to
allow oblivious caching. For example, for certain tree operations
(such as inserts), one can predict from public information which
nodes will be accessed repeatedly (and thus must be in the
cache), and can thus safely retrieve these nodes from the cache
without a dummy ORAM access. We make a worst-case access
only when such a prediction is not possible.

B. Summary of Applications and Evaluation
We show that Oblix can scale to databases of tens of millions

of records while providing practical performance. For example,
retrieving the top 10 values mapped to a key takes only 12.7 ms
for a database containing ∼ 16 M records.

We point out that an important side effect of using hardware
enclaves is support for multiple users even when some users
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Figure 2: Visibility of access patterns with enclaves such as Intel SGX: the
white area is visible to the attacker, while the grey area is not. Data leaving
a hardware enclave is encrypted, but memory addresses are not encrypted.

are malicious and want to learn the queries of other users:
users submit their queries to the enclave, which executes the
queries correctly and privately for each user. A malicious user
cannot learn the query of another user. Supporting multiple
users is difficult with traditional ORAM systems because they
need users to follow an ORAM protocol correctly [6], else
they affect each other’s privacy.

We also demonstrate the viability of Oblix for three existing
applications that can benefit from private search indices. Two
of these three applications require support for multiple users.
We show how Oblix supports these applications with latencies
on the order of a few milliseconds. Since search indices are
basic building blocks, we expect Oblix to have further useful
applications.

Private contact discovery for Signal. Signal [2] is an
encrypted messaging system that recently introduced a service
for private contact discovery: users can query the service
to determine which contacts in their phone also use Signal,
without revealing their contact list to Signal’s servers. The
service performs a full scan of Signal’s database within an
SGX enclave to ensure obliviousness at the server [44]. We
show that Oblix provides a solution with lower latency. For
every contact in the user’s list, Oblix performs a logarithmic
search in the database instead of a linear scan.

Anonymizing Google’s Key transparency. Google’s Key
Transparency [1, 46] enables users to discover public keys of
other users. The service guarantees the integrity of the retrieved
public key, but does not provide anonymity: the server learns
the identity of the user whose key it returns. We show that
Oblix can be used to anonymize Key Transparency with low
latency. In particular, we show that Oblix provides an order-
of-magnitude improvement in latency compared to a baseline
approach that offers the same level of security.

Oblivious searchable encryption. As discussed above, many
searchable encryption (SE) schemes suffer from a long line
of attacks [4, 10, 26, 30, 34, 42, 53, 79] that exploit access
patterns. We use Oblix to augment the security of searchable
encryption by eliminating the leakage from access patterns.
We evaluate the augmented SE scheme over the entire Enron
email corpus [19] and show that it can support reads/writes
with a latency of a few milliseconds.

II. SYSTEM OVERVIEW

We provide an overview of Oblix. Fig. 2 shows the archi-
tecture of the system: multiple users interact with a server
equipped with a hardware enclave. (While our implementation
uses Intel SGX enclaves, Oblix’s design only requires an
abstract notion of an enclave.) The data stored on the server
is encrypted with a key held in the enclave. Each user uses
remote attestation [35] to ensure that it is communicating
with a correctly-setup enclave and establishes a secure (TLS)
connection with that enclave. Over this secure channel, the
user then sends search, insert, or delete queries to the server,
which responds after running Oblix’s protocols.

Oblix exposes to applications the interface of a search index
expressed as a sorted multimap (see Fig. 1). This index maps
a key k to an array of sorted and distinct values (v1, . . . , vn).
For example, if one wants to use this index to search words in
documents, one maps each word w (the key) to a list of pairs
(si, di), where di is the identifier of the document containing
w and si is a relevance score for that document. As discussed,
the scores enable meaningful selection of the top-r documents
for a search query, and thus aid in hiding the result size by
returning a fixed number of results. Concretely, DOSM provides
the function Map.Find(k, i, j) → (vi, . . . , vj), which returns
the i-th through j-th values for a key k. The user application
can make multiple requests to the same key k for different
intervals, and Oblix does not reveal to the attacker that the
requests are for the same key or interval. Nevertheless, the
user application must exercise caution when issuing many
simultaneous requests for the same key to prevent the attacker
from correlating them due to their timing. Like in prior work
on searchable encryption, we focus only on the design of the
search index, and recommend standard and complementary
techniques [64] to retrieve documents matching a search.

A. Threat model

a) Server: We employ a general and expressive attacker
model for a hardware enclave (see Fig. 2). The attacker can
perform any hardware attack it wishes on the memory and on
the memory bus, but cannot attack the processor in any way,
and cannot glean any information from inside the processor
(including processor keys). This attacker controls the server’s
software stack outside of the enclave, including the OS.

With respect to memory access patterns, we assume that
the adversary can observe (and modify) memory addresses
and (encrypted) data on the memory bus, in memory, or in
secondary storage (as in Fig. 2). We divide access patterns
into two types: access patterns to data and access patterns
to code [69, 75]. The doubly-oblivious algorithms of Oblix
prevent leakage of both types of access patterns assuming only
a simple “oblivious swap” primitive. Our source code carefully
implements these algorithms, but we do not ensure that the final
binary hides all access patterns to code because external factors
like compiler optimizations and cache replacement policies
influence how instructions are fetched into cache. Preventing
these factors from introducing data-dependent code accesses



is out of the scope of this paper; complementary prior work
exists that can aid in this task [31, 41].

At the same time, Oblix considers as out of scope any
side-channel leakage from within the enclave (e.g., cache-
timing, branch predictor-based, power analysis, or other timing
attacks) [9, 32, 29, 49, 58, 71], as well as rollback attacks
[65]. Techniques to mitigate such attacks are complementary
to Oblix, and many proposed solutions [14, 16, 31, 59, 60] can
be applied to Oblix. Finally, denial-of-service attacks are out
of scope: we do not prevent a cloud provider from destroying
all client data or denying access to it. Doing so is not in the
provider’s interest, as clients can choose a different provider.

Oblix achieves protection against modification attacks (e.g.,
attacker modifies data or queries) via Merkle hash trees [47]
both by using Intel SGX’s built-in integrity tree and by
employing a separate hash tree for data stored outside. These
techniques are standard, so in the rest of this paper, we do not
elaborate further on them and focus only on how we protect
against passive attackers via our (doubly-)oblivious protocols.

b) Client: In Oblix, a client can also misbehave: the client
can release its own queries or query results if it wishes, but
it cannot affect the privacy of the queries or results of other
clients. If a client wants to protect its query privacy, the client
should faithfully follow Oblix’s protocol.

III. PRELIMINARIES

We use two cryptographic building blocks: Path ORAM [64]
and oblivious data structures [74]. In the next two sub-sections,
we recall aspects of these schemes that are relevant to this paper.
Below and throughout this paper, we consider algorithms that
receive and update a client state; we use the notation “mut st”
to emphasize that the state variable st is mutable.

A. Path ORAM

Path ORAM [64] is a type of ORAM protocol [27]. It enables
a client to perform oblivious reads and writes to external
(server) memory with low bandwidth and latency.

The external (server) memory is arranged in a binary tree
of N buckets; each bucket stores C blocks of B bits each.
The client maintains two data structures: (i) a position map
Positions, which assigns to each block identifier bid a leaf lf
in the aforementioned tree such that block bid is stored by
one of the buckets on the path from the root to lf; (ii) a stash
Stash, which maps block identifiers to blocks for all blocks
that have not yet been evicted. (The same block identifier may
appear in Positions and Stash.) When using Path ORAM for
oblivious data structures (see Section III-B), the client does not
store Positions in full, but only a small portion of it, reducing
the size of the client’s state to constant.

Below, we summarize how the client can initialize the
external memory (via ORAM.Init), and then read blocks (via
ORAM.ReadBlock), modify them, and write them back (via
ORAM.Evict). This high-level summary will be useful later.
• Initialization: ORAM.InitS(m, [bli]

n
1 ) → st. On input a

maximum number of blocks m, and a list of initial blocks

[bli]
n
1 (with n ≤ m), ORAM.Init initializes the server S with

2log(dm/Ce) buckets, and outputs the initial client state st.
• Read a block: ORAM.ReadBlockS(mut st, bid, lf) → bl.

On input client state st, a block identifier bid, and leaf lf,
ORAM.ReadBlock fetches all blocks on the path from the
root to lf, inserts these blocks into st.Stash, and outputs the
block bl in this path having identifier bid. Furthermore, it
assigns bid a new random leaf in st.Positions (ensuring that
the next access to this block fetches a random path).

The client can arbitrarily modify the contents of blocks in Stash.
To write back modified blocks, the client runs ORAM.Evict on
input all leaves [lfi]

n
1 fetched via ORAM.ReadBlock since the

last ORAM.Evict call. Informally, eviction reconstructs paths
for these leaves using blocks in Stash, and then writes these
paths back to the server. Eviction is designed to ensure that
Stash has a bounded size, which is crucial for efficiency.
• Stash eviction: ORAM.EvictS(mut st, [lfi]

n
1 ). On input

client state st and a list of leaves [lfi]
n
1 , ORAM.Evict

constructs buckets on the paths defined by [lfi]
n
1 , as follows.

Proceeding layer-by-layer in the ORAM tree, starting from
the leaf layer to the root layer, for each block in Stash,
determine whether the block may reside in a bucket on this
layer (as determined by the corresponding leaf in Positions
and whether there is space in that bucket). If so, the block
is evicted from the stash into that bucket. Any blocks that
are not evicted remain in Stash. The final set of buckets is
then written back to external memory.

We define security for Path ORAM in Appendix B.

B. Framework for oblivious data structures

Oblivious data structures (ODS) [74] is a framework for
designing oblivious analogues of data structures that can be
expressed as trees of bounded degree. This property is captured
by the next definition.

Definition 1. A data structure has tree-like accesses if it is
represented via nodes storing (data and) pointers to other
nodes such that: (i) every node has a unique predecessor (a
node pointing to it); (ii) every operation accesses a unique
root node before any other node; (iii) every operation accesses
a non-root node’s predecessor before it accesses the node.

The first step of using the ODS framework is to express
the desired functionality via a data structure that has tree-like
accesses; this could mean modifying an existing data structure
or designing one from scratch.

The second step is an initialization procedure that converts
an instance of this plaintext data structure into its oblivious
counterpart as follows. The client converts plaintext data
structure nodes into ODS nodes by replacing all plaintext
pointers with ODS pointers. (These depend on the underlying
ORAM scheme. For example, when using Path ORAM, an ODS
pointer is a pair ptr = (bid, lf) consisting of a block identifier
and a leaf.) Afterwards, the client encrypts and outsources all
ODS nodes to the (untrusted) server, while retaining only the
root’s ODS pointer. Definition 1 ensures that the client does
not need to store other pointers.



Subsequently, when executing an operation on the data
structure, the client runs a special start procedure, then uses
an access procedure to obliviously perform all the memory
accesses required by the operation, and then runs a finalize
procedure. To access a certain node, the client follows pointers
from the root to the node; throughout, the client updates
positions and data as required by the data structure operation.
• Initialization: ODS.InitS(m, [nodei]

n
1 , irt)→ (st, ptrrt). On

input a maximum number of nodes m, a list of data structure
nodes [nodei]

n
1 , and an index irt for the “root” of the data

structure in this list, ODS.Init converts the nodes in [nodei]
n
1

to ODS nodes, initializes the server and outputs initial client
state st and an ODS pointer ptrrt for the root.

• Start: ODS.Start(mut st, ptrrt). On input the current client
state st and the root’s pointer ptrrt, ODS.Start updates the
state to use rt for future invocations of ODS.Access.

• Access: ODS.AccessS(mut st, op) → res. On input the
current client state st, and operation type op, ODS.Access
outputs the operation result res (and updates the state st).
There are four operation types.
– Read: op = read(ptr) and res = node. Takes as input a

pointer and outputs the node at the pointer.
– Insert op = ins(node) and res = ptr. Takes as input a

node to insert and outputs a pointer to it.
– Delete: op = del(ptr) and res = ⊥. Takes as input a

pointer to a node to delete and outputs ⊥.
– Write: op = write(node, ptr) and res = ⊥. Takes as

input a node to write and a pointer to it, and outputs ⊥.
• Finalize: ODS.FinalizeS(mut st, node, bound) → ptrrt. On

input current client state st, the (possibly updated) data
structure root node, and an upper bound bound on the
number of ORAM.ReadBlock operations to be performed,
ODS.Finalize invokes ORAM.ReadBlock on dummy inputs
enough times to make the total number of reads equal to
bound, and outputs an updated root pointer ptrrt.

We define security of ODS schemes in Appendix C.

IV. OBLIVIOUS SORTED MULTIMAPS

Our oblivious sorted multimap (OSM) enables a client to
outsource a certain type of key-value map to an untrusted server
so that the map remains encrypted and, yet, the client can still
perform search, insert, and delete operations with small cost
(in latency and bandwidth) without revealing which key-value
pairs of the map were accessed. This notion extends previous
notions such as oblivious maps [55, 74].

The following sub-sections are organized as follows: in
Section IV-A we define sorted multimaps, the data structure
supported by OSM; in Section IV-B we define OSM schemes;
in Section IV-C we informally describe our construction of an
OSM scheme. We provide more details in Appendix A.

A. Sorted multimaps

A sorted multimap Map is a data structure that maps a key
k ∈ {0, 1}`k to a (possibly empty) list of sorted and distinct
values (v1, . . . , vn) with vi ∈ {0, 1}`v , denoted Map[k]. It
supports the following operations.

• Size: Map.Size(k)→ n. On input a key k, Map.Size outputs
the number of values in the list Map[k].

• Find: Map.Find(k, i, j) → (vi, . . . , vj). On input a key k,
start index i, and end index j (no less than i), Map.Find
outputs the values between locations i and j (included) in
the list Map[k]; any requested location beyond the end of the
list Map[k] is answered with the value v := ⊥. (In particular,
the answer always consists of j − i + 1 values.)

• Insert: Map.Insert(k, v)→ ⊥. On input a key k and value v,
Map.Insert adds v to the list Map[k] (if not already present),
keeping its values sorted.

• Delete: Map.Delete(k, v)→ b. On input a key k and value
v, Map.Delete removes v from the list Map[k], and outputs
1 if v was present and 0 if not.

B. Definition of OSM schemes

An OSM scheme is a tuple OSM := (Init,Find, Insert,
Delete, S) that contains algorithms for two parties, the OSM
client and the OSM server. The OSM client uses Init to initialize
the scheme with a given sorted multimap; subsequently, he may
use Find to retrieve sublists associated with a given key, as
well as use Insert and Delete to modify such lists. All of these
algorithms require interaction with the OSM server, which runs
the interactive algorithm S. We represent this interaction by
treating S as an oracle.
• Initialization: OSM.InitS(Map) → st. On input a sorted

multimap Map, OSM.Init interacts with S in order to store
at S an “encryption” of Map, and then outputs a local state
st (to be stored by the OSM client).

The semantics of the following operations are the same as
the corresponding Map operations, where Map is the sorted
multimap stored encrypted at S by OSM.Init.
• Size: OSM.SizeS(mut st, k) → n. On input local state st

and key k, OSM.Size interacts with the server S and then
outputs an integer n.

• Find: OSM.FindS(mut st, k, i, j) → (vi, . . . , vj). On input
local state st, key k, start index i, and end index j (no less
than i), OSM.Find interacts with S and then outputs a list
of j − i + 1 values (vi, . . . , vj).

• Insert: OSM.InsertS(mut st, k, v). On input local state st,
key k, and value v, OSM.Insert interacts with S.

• Delete: OSM.DeleteS(mut st, k, v)→ b. On input local state
st, key k, and value v, OSM.Delete interacts with S and then
outputs a bit b.

Correctness. Correctness of an OSM scheme is defined via
two experiments. In the real world experiment, the adversary
has access to an oracle CReal that implements the OSM client.
In the ideal world experiment, the adversary has access to an
oracle CIdeal that implements a (plaintext) sorted multimap.
Both oracles expose to the adversary the same interface of
possible queries (Init, Size, Find, Insert, Delete). See
Fig. 3 for details on how CIdeal and CReal generate their
answers. An OSM scheme is correct if no efficient adversary
A can distinguish between these oracles, i.e., ACReal and ACIdeal

are computationally indistinguishable as distributions.



Correctness Security
CReal CIdeal SReal SIdeal

Init(m, Map) store st← OSM.InitS(m, Map) store Map store st← OSM.InitS(Map) store st← Sim.InitS(m, `k, `v)

Size(k) OSM.SizeS(mut st, k)→ n Map.Size(k)→ n OSM.SizeS(mut st, k)→ n Sim.SizeS(mut st)

Find(k, i, j) OSM.FindS(mut st, k, i, j)→ #—v Map.Find(k, i, j)→ #—v OSM.FindS(mut st, k, i, j)→ #—v Sim.FindS(mut st, j − i + 1)

Insert(k, v) OSM.InsertS(mut st, k, v) Map.Insert(k, v)→ ⊥ OSM.InsertS(mut st, k, v) Sim.InsertS(mut st)

Delete(k, v) OSM.DeleteS(mut st, k, v)→ b Map.Delete(k, v)→ b OSM.DeleteS(mut st, k, v)→ b Sim.DeleteS(mut st)

Figure 3: Correctness and security oracles for an OSM scheme. Oracle outputs are highlighted.

Security. Security of an OSM scheme is defined via two
experiments. In the real experiment, the adversary has access
to an oracle SReal that runs the OSM client and outputs nothing.
In the ideal experiment, the adversary has access to an oracle
SIdeal that runs a simulator Sim that receives only certain
subsets of the inputs. Both oracles expose to the adversary
the same interface of queries (Init, Size, Find, Insert,
Delete), and the adversary gets to observe all communication
of the oracles with the server S and all server state. See Fig. 3
for details on how SReal and SIdeal generate their answers.
An OSM scheme is secure if no efficient adversary A can
distinguish between these oracles, i.e., ASReal and ASIdeal are
computationally indistinguishable as distributions.

C. Construction of an OSM scheme

First, we explain why oblivious maps from prior works
[55, 74] are not suitable for realizing OSM schemes; then, we
informally describe our construction of an OSM scheme. In
Appendix A we provide the detailed construction, including
pseudocode and proofs of correctness and security.

Insufficiency of oblivious maps. Suppose that, given a sorted
multimap that associates keys k to sorted lists (v1, . . . , vn),
we construct a (standard) map by associating new keys
(k, 1), . . . , (k, n) to the values v1, . . . , vn respectively. Search-
ing is simple: to find the values of a key k at indices i, . . . , j,
we fetch from the map the values associated to (k, i), . . . , (k, j).
However, if we want to insert, for a key k, a new value v′ that
is smaller than all other values in the list of k, we need to shift
every key “to the right”: (k, t) must become (k, t+1) for every
t ∈ {1, . . . , n}. This entails Ω(n) oblivious accesses, which is
expensive; even worse, doing so leaks the size of the list. Hiding
this leakage would require padding to the worst-case size of a
list, thereby making this idea even more expensive. (Indeed,
some keys might have very large lists, e.g., proportional to
the number of documents in a database!) Our approach below
sidesteps these issues by implicitly constructing a (sub-)tree
over each key’s list, ensuring that insertions have logarithmic
complexity and reveal only the total number of key-value pairs
in the map (and thus do not reveal the list’s size).

Our OSM construction. We directly construct an OSM
scheme in the oblivious data structure (ODS) framework of
[74], summarized in Section III-B. This involves two steps:
(i) construct a plaintext data structure having tree-like memory
accesses, and (ii) replace its memory accesses with oblivious
counterparts defined by the ODS framework. Recall (from
Definition 1) that an access pattern is tree-like if every data

structure operation starts from a distinguished root node, and
the graph arising from following pointers during its execution
forms a tree (there is a unique path from the root node to
all other nodes). Below we describe at a high level how to
complete the first of the two steps (the more interesting one).

A tree-like sorted multimap. We extend AVL search trees to
store multiple values for the same key, and borrow techniques
from order statistic trees to efficiently retrieve the i-th value
of a given key.

An AVL search tree is a balanced binary search tree that
implements a simple map from keys to values; it supports
searches, inserts, and deletes in worst-case logarithmic time
(via its worst-case logarithmic height). Each node in the tree
stores a key and a value; each key appears in at most one node.
(In particular, when inserting a key-value pair (k, v), if a node
with key k already exists, its value is simply overwritten to v.)

In contrast, we need a sorted multimap, which maps a key to
a sorted list of values. We still consider nodes that store a key
and a value (and other information described below), but now
allow multiple nodes to share the same key. Some operations
almost directly follow from AVL trees: (a) when inserting a
key-value pair (k, v) not already in the tree, we insert a new
new node for (k, v) via AVL tree insertion while treating the
pair (k, v) as a key; (b) deletions mirror insertions; (c) search
can be modified to retrieve the list of values associated with
a key (instead of just a single value). However, the foregoing
modifications fall short of enabling retrieval of arbitrary sublists
of the list corresponding to a key (without retrieving the full
list), as needed in a sorted multimap. To do this, we incorporate
techniques from order statistic trees, as we discuss next.

In an order statistic binary search tree, each node also stores
the number of nodes in each (left and right) child subtree. This
information can be used to efficiently find the node with the
i-th smallest key and to augment AVL insertions and deletions
to maintain this information. (See [15, Chapter 14].)

We modify this approach to obtain AVL-based sorted
multimaps in which one can efficiently find a key’s i-th value,
and thus also any sublist of values. Informally, a node with key
k stores the number of nodes that also have key k in each child
subtree (rather than all nodes, potentially with different keys, in
those subtrees); see Fig. 4. Straightforward modifications to the
insertion and deletion procedures ensure that this information
is maintained across operations. It is not hard to verify that
the resulting data structure has tree-like accesses, as required.

Correctness of the foregoing approach is reducible to the
correctness of AVL search trees and order statistic trees (our



modifications are minor). Insertions and deletions take time
O(log(n)), while finding the i-th through j-th values for a key
requires time O(log(n) + j − i).

key

value

l_same_key_size r_same_key_size

l_child_ptr r_child_ptr

Figure 4: Information stored in a node in our OSM construction.
Below we summarize operations for the sorted multimap

(with tree-like accesses) outlined above. Due to space reasons,
we omit a description of deletions; analogously to inserts, these
can be achieved via suitable modifications of AVL tree deletion.
• Size(k): Depth-first search for k until the first k-node, which

stores the total number of k-nodes in the tree, and return this
number. (Compare: in order statistic trees, the root stores
the number of nodes in the tree.)

• Find(k, i, j): Find paths to the i-th and j-th k-nodes and
fetch all k-nodes in the subtree bounded by these.
1) Find path to s-th k-node: Find the s-th smallest node

in the order statistic subtree consisting only of k-nodes.
That is, run a depth-first search for k as follows. When
visiting a k′-node with k′ 6= k, recursively search the left
subtree (if k < k′) or right subtree (if k > k′). When
visiting a k-node, letting l be the number of k-nodes in its
left subtree: if s < l, recursively search the left subtree;
if s = l, output the path to the current node; if s > l, set
s := s− (l + 1) and recursively search the right subtree.

2) Retrieve nodes: Find the node at which the paths to the i-
th and j-th k-nodes diverge and run a breadth-first search
from this node by considering only k-nodes. That is, add
to the BFS queue only nodes that are no less than the i-th
k-node and no greater than the j-th k-node (to compare
two nodes, first compare their keys and, if equal, compare
their values). Return the resulting set of k-nodes.

• Insert(k, v): Search for the node where insertion must occur;
if this node already exists, then we are done; otherwise,
create a new node and make it the appropriate child of
the previously-visited node. Then retrace the path from the
inserted node back to the root, rebalancing as needed. The
rebalancing procedure is a modification of order statistic
AVL trees that ensures that the size information of visited
k-nodes is correctly updated (at each step of retracing, we
store the number of k-nodes seen thus far and, if the node at
the current step is a k-node, then we rebalance and update
the size of the appropriate child subtree).

We remark that our OSM construction above (coupled with
padding as discussed below) already provides a search index
that does not leak access patterns without relying on hardware
enclaves: the client stores the OSM state locally and interacts
with the remote server over the network for each OSM
operation. Leveraging hardware enclaves will enable better
performance and support for multiple users.

V. DOUBLY-OBLIVIOUS PRIMITIVES

We describe how to design client algorithms for Path ORAM,
ODS, and OSM that are themselves oblivious. We refer to the

resulting cryptographic primitives as doubly-oblivious because
not only are the client’s accesses to the server’s memory
oblivious, but also the client’s accesses to its own local memory
are oblivious. This requirement arises when running the ORAM
client inside a hardware enclave at the server because, as
discussed in Section II-A, the enclave does not hide access
patterns to this encrypted memory. Path ORAM (Section III-A),
ODS (Section III-B), and OSM schemes (Section IV) already
guarantee that the client’s accesses to external memory are
oblivious, but in current constructions the client’s accesses to
internal memory are not oblivious.

One can trivially make accesses to internal memory oblivious
by replacing each such access with a linear scan. However,
such an approach yields expensive solutions, and the challenge
lies in designing alternatives that, ideally, are almost as efficient
as the original client algorithm.

In the next few sub-sections we explain how we design
efficient data-oblivious client algorithms for Path ORAM
(Section V-A), ODS (Section V-B), and OSM schemes (Sec-
tion V-C). Table I summarizes the costs of the (standard) client
algorithms and the data-oblivious variants that we use. Our
experiments demonstrate that the overheads that arise from
double obliviousness are small (see Sections VI-A and VI-B).

A. Doubly-oblivious RAM

We now provide intuition for our construction of path doubly-
oblivious RAM (Path DORAM). We begin by describing our
construction of DORAM.ReadBlock and DORAM.Evict, and
then describe our DORAM.Init algorithm. Pseudocode for these
algorithms is provided in Appendix D.

In the rest of this section, we denote the number of buckets at
the server by N , the capacity of each bucket (in blocks) by C,
and the block size (in bits) by B. We use a linear-time function
OblSwap(b, x, y) that obviously swaps x and y if b = 1. Our
algorithms also invoke Batcher’s oblivious odd-even merge
sort, which has time complexity O(n log2 n) to sort n items.

Naive approach. A straightforward approach to achieve
double-obliviousness is to replace suitable sub-routines (e.g., a
binary search) with linear scans. Namely, ReadBlock fetches
the required path, inserts all blocks on that path into its stash,
and returns the requested block by linearly scanning the stash;
Evict constructs buckets for the path of a leaf lf as follows.

Initialize mut inserted = 0. Then for each block bl in the stash Stash:
For each bucket bu on the path of lf (ordered from leaf upwards):
1) Let is_ancestor = 1 if bu is on the path to bl’s leaf.
2) For each i ∈ {1, . . . , C}:

a) Let cond = bu[i].is_dummy ∧ is_ancestor ∧ ¬ inserted.
b) OblSwap(cond, bl, bu[i]).
c) Set inserted := cond ∨ inserted.

Namely, for each block bl in Stash, Evict scans the list of
buckets to be written back, checks if bl can go in one of these,
and obliviously writes it to that bucket if so. When evicting
n paths after n ReadBlock calls, the stash contains roughly
S = nC log(N) blocks, and so this naive Evict procedure has
time complexity O(B · S · nC logN) = O(n2BC2 log2 N).



Scheme Algorithm Client type

Standard Doubly-oblivious

Path
ORAM

Init Ti1 = O(CN logCN) O(CN log2(CN) logN)
ReadBlock Tr = O(C logN logS) O(C logN + ebl)
Evict Te = O(BS logN log(ibu)) O(ebl2 logN + BS log2 BS)

ODS

Init Ti2 = O(CN log(CN)) + Ti1
Start Ts = O(1)

Access Ta =

{
6∈ cache
∈ cache

O(log(ca)) + Tr

O(log(ca))
O(ca) + Tr

O(ca)
Finalize Tf(n) = O(ca)+Te (with ebl = n)

OSM

Init O(CN log(CN)) + Ti2
Find(m) (2h + m) · Ta + Tf(2h + m)
Size h · Ta + Tf(h)
Insert (h + 1) · Ta + Tf(h + 1)

B block size (in bits)

N server size (in buckets)

C bucket size (in blocks)

ebl size of ExplicitBlocks (in blocks)

ibu size of ImplicitBuckets (in buckets)

S = ebl +C · ibu, stash size (in blocks)

ca size of ODS cache (≤ ebl)
h = 1.44 log(CN), worst-case height of

AVL tree with CN nodes

Table I: Comparison of standard and doubly-oblivious client algorithms for Path ORAM, ODS, and OSM. Whenever a client algorithm invokes a subroutine,
the running time of the subroutine is for the corresponding client type. For example, DODS invokes Path DORAM algorithms.

Saving a multiplicative factor of C. We improve upon
naive eviction by splitting eviction into two steps, saving a
multiplicative factor of C. In the first step, we assign blocks
to buckets; in the second step, we write blocks to buckets.
• Block assignment. We initialize a linear-scan “bucket fullness”

map BuFu from bucket nodes (i.e., identifiers of the bucket’s
location in the ORAM tree, not the full bucket) to the number
of blocks in those buckets (i.e., the fullness of the bucket) so
that entries in BuFu are sorted by their nodes from leaf to root.
Then, for each block bl in Stash, we scan the list of buckets
to be written back (in order from leaf to root), and update
BuFu as follows. If bl should be written to a bucket bu, then
we increment BuFu[bu.node], and set bl.node := bu.node.
Otherwise, we perform dummy operations. This step has
time complexity O(S · n logN) ≈ O(n2C log2 N).

• Bucket construction. We obliviously sort Stash to group
together blocks with the same node, and construct buckets
out of these. To hide how many blocks are assigned to
buckets, we pad Stash with dummy blocks. Any unassigned
blocks are re-added to Stash. This step has time complexity
O(B · S log2(S)) ≈ O((nBC logN) log2(nBC logN)).

The overall complexity of this eviction procedure, which we call
Evicts, is O(n2C log2 N + nBC logN log2(nBC logN)) ≈
O(nC logN(n logN + B log2(nBC logN))).

Processing only requested blocks. We further improve on the
above via the following insight. Even though a user invokes
ReadBlock to request only one block, O(logN) additional
blocks are implicitly fetched and added to the stash, which
means that Evict has to process these additional blocks when
constructing buckets. Our new eviction procedure Evictf gains
in time complexity by separately processing explicitly requested
blocks (henceforth explicit blocks) and implicitly fetched blocks
(henceforth implicit blocks), as follows.

In more detail, we modify ReadBlock to scan the list of
fetched buckets, (obliviously) remove the block of interest
(say bl), and replace bl with a dummy block. It then adds
bl to a list ExplicitBlocks of previously requested explicit
blocks, and adds the updated list of fetched buckets to a list
of previously requested buckets ImplicitBuckets. For eviction,
note that blocks in (buckets in) ImplicitBuckets are already

bucketed correctly: they are already in buckets on the path to
their leaves. Hence, we can skip re-bucketing these blocks, and
can focus on re-bucketing only the blocks in ExplicitBlocks.
Concretely, Evictf , like Evicts, proceeds in two phases:
• Block assignment. We use ImplicitBuckets to compute a

pre-populated bucket fullness map BuFu. Then, for every
block in ExplicitBlocks, we update BuFu as in Evicts and
assign each block to a bucket. This step has time complexity
O(|ExplicitBlocks| · n logN).

• Bucket construction. We proceed as in Evicts.1

The overall time complexity of Evictf is thus
O(nC logN(n/C + B log2(nBC logN))), which saves
a factor of logN

C compared to Evicts.
However, this efficiency gain comes at the expense of a lower

eviction rate; Evictf evicts fewer blocks than Evicts. This is
because Evictf only re-assigns explicit blocks, and does not
shuffle implicit blocks. Furthermore, each such explicit block
can only be assigned to a slot vacated by a previously fetched
explicit block. Together, these constraints reduce the rate of
stash eviction. As a countermeasure, our final construction of
DORAM.Evict invokes Evictf in the common case (for speed),
but invokes Evicts at fixed intervals (to empty out the stash).
Empirical evidence from our experiments, suggests that this
interval can be a fixed constant as small as 3.

Initialization. There is a naive doubly-oblivious initialization
strategy: given the initial list of n blocks [bli]

n
1 , individually

insert every block into the stash, and then use DORAM.Evict to
evict each block from the stash. However this method requires
time O(nCN). When the server is at capacity (CN ≈ n), this
grows quadratically with n, and is too large for the database
sizes that we consider. We address this problem by designing
a new doubly-oblivious initialization strategy that has time
complexity O(CN log3 N), which enables us to efficiently
handle databases with tens of millions of records.

Our algorithm proceeds layer by layer in the tree. Within each
layer, it proceeds similarly to Evict: it first assigns blocks to
buckets, and then obliviously sorts these blocks to group them

1In our implementation, instead of sorting, we write blocks to buckets via
linear scans (as in the naive approach). While this is asymptotically worse,
for our use cases this method is concretely faster.



into buckets. In more detail, for a given tree layer, DORAM.Init
first obliviously sorts [bli]

n
1 by the blocks’ tree nodes (initially,

just each block’s assigned leaf). Next, it scans the list to
compute the fullness of each bucket, and assigns each block to
a bucket according to this fullness. Finally, it constructs buckets
by obliviously sorting [bli]

n
1 so that blocks with the same tree

nodes are together (as before, we pad with enough dummy
blocks before to hide the number of bucketed blocks). To
proceed to the next layer, it sets the nodes of unassigned blocks
to be the parent of their current nodes. Since there are log(N)
layers, and each layer requires two oblivious sorts and a linear
scan, this algorithm has time complexity O(CN log3(N)).

Final construction. We now summarize our final construction
of Path DORAM; for detailed pseudocode see Appendix D.

• Initialization: ORAM.InitS(m, [bli]
n
1 )→ st. Proceed layer-

by-layer in the ORAM tree. In each layer, first assign blocks
to buckets, and then obliviously sort these blocks to group
them into buckets.

• Read a block: DORAM.ReadBlockS(mut st, bid, lf) → bl.
Fetch buckets on the path to lf. Scan this list to obliviously
replace the block bl having identifier bid with a dummy
block. Insert the modified buckets into ImplicitBuckets, and
insert bl into ExplicitBlocks. Finally, output bl.

• Eviction: DORAM.EvictS(mut st, [lfi]
n
1 ). Given a integer t

fixed at setup, store in st a counter c ∈ Zt. If c = 0 mod t,
invoke Evicts; else, invoke Evictf . Increment c.

Note that we have not specified how to obliviously access the
client’s position map because this can be achieved by standard
recursion techniques [64] or by using the ODS framework [74].

Stashless ORAM. The primary obstacle we faced in designing
Path DORAM was creating a doubly-oblivious stash eviction
procedure. To avoid this trouble, one might instead think to use
a stateless ORAM scheme [28]. However, this idea does not
help because all such schemes still require working space to
store blocks between reads and eviction; the adjective “stateless”
only describes permanent client storage. Obliviously accessing
this working space is expensive when it is large, but Path
ORAM only requires polylog(N) working space, compared
to space nc for 0 < c < 1 for other schemes.

B. Doubly-oblivious data structures

We describe a framework for doubly-oblivious data struc-
tures (DODS). We modify the existing framework for singly-
oblivious data structures (ODS, see Section III-B) to: (i) use
Path DORAM (see prior sub-section), instead of merely Path
ORAM, as a building block; and (ii) leverage other ideas for
efficiency. Details follow.

The ODS client. We briefly recall the construction of the
singly-oblivious data structure framework of [74]. The client
realizes a data structure operation by running ODS.Start once,
ODS.Access some number of times, and ODS.Finalize once;
throughout, the client maintains a cache with fetched nodes.
Whenever the client is queried on a node (via ODS.Access),
it looks for the node in the cache and returns it if there;

otherwise, the client performs an ORAM.ReadBlock oper-
ation to fetch the node from the server, adds it to the
cache, and returns it. Since the number of ORAM.ReadBlock
operations may be data dependent, ODS.Finalize pads this
number to a data-independent (worst-case) number with dummy
ORAM.ReadBlock operations, thereby ensuring that accesses
to the (external) memory at the server are oblivious.

Naive approach. A naive approach to make the ODS client
doubly-oblivious is to simply replace the underlying ORAM
scheme with a DORAM scheme and replace the cache with
an oblivious one. However, this does not suffice: whether the
returned node is fetched from the cache or the server depends
on the queried node, and an adversary observing accesses to
internal memory can distinguish between the two cases, even if
accesses to external memory are oblivious and their number is
data independent. A straightforward fix is to always perform
a (possibly dummy) DORAM.ReadBlock operation whenever
DODS.Access is invoked, regardless of whether the queried
node is cached or not. However, while doubly-oblivious, this
approach harms efficiency since the ODS client now may
perform unnecessary DORAM.ReadBlock operations.

Our approach. We avoid unnecessary dummy ReadBlock
operations via the observation that, in certain cases, the
adversary can predict if a node is fetched from the cache.

For example, in an AVL tree insertion, the rebalancing phase
only visits nodes that have been previously visited, and so are
in the cache. In our doubly-oblivious sorted multimap (see
Section V-C), we design insertion so that rebalancing begins
only after a fixed number of nodes have been accessed in the
previous phase, so the adversary can predict when rebalancing
begins, and thus also that the nodes accessed then are cached.

In such cases, we can forgo the dummy DORAM.ReadBlock
operation and gain efficiency. When we are not in such a case
(the information of whether a node is in the cache is not public),
we fall back to the aforementioned simple approach (of always
performing a dummy DORAM.ReadBlock).

Our framework for doubly-oblivious data structures (DODS)
formalizes the foregoing ideas, most notably by exposing a
richer interface that enables fine-grained control over memory
accesses to internal memory. Below we summarize the interface
and implementation of each algorithm of this framework.
• Initialization: DODS.InitS(m, [nodei]

n
1 , irt) → (st, ptrrt).

Equals ODS.Init, but calls DORAM.Init, not ORAM.Init.
• Start: DODS.Start(mut st, ptrrt). Equals to ODS.Start.
• Access: DODS.AccessS(mut st, op)→ res.

Input now has the form “op(data, dummy, isCached)”. There
are four cases:
– dummy = 1, isCached = ?: Perform dummy ReadBlock.
– dummy = 1, isCached = 1: Fetch dummy node from the

cache without dummy ReadBlock.
– dummy = 0, isCached = 1: Fetch actual node from cache.
– dummy = 0, isCached = ?: Perform ReadBlock to fetch

real (non-dummy) node. If queried node is already cached,
perform dummy ReadBlock.



• Finalize: DODS.FinalizeS(mut st, node, bound) → ptrrt.
Similar to ODS.Finalize, except that it does not perform
additional dummy operations. Instead, it checks that the
number of DORAM.ReadBlock operations thus far equals
bound. Satisfying this condition is the responsibility of the
data structure designer. (Compare: in ODS the designer only
has to specify the bound; padding occurs automatically.)

C. Doubly-oblivious sorted multimaps
We construct doubly-oblivious sorted multimaps (DOSM).

We modify our construction of singly-oblivious sorted mul-
timaps (OSM, see Section V-B) to: (i) use DODS (see prior
sub-section), instead of merely ODS, as a building block; and
(ii) leverage the fine-grained interface of DODS for improved
efficiency. Details follow.
Naive approach. A naive approach to make the OSM client
doubly-oblivious is to simply replace the underlying ODS
framework with the DODS framework. However, this does
not suffice: the OSM client maintains internal state (outside
the ODS framework) and its accesses to it are data dependent.
For example, OSM.Insert uses a depth-first search to find the
insertion location, and this search terminates as soon as the
location is found, which depends on the key-value pair to
insert. The adversary can learn some information about this
pair because it can observe when this termination occurs (after
this point all accesses correspond to cache accesses rather than
external memory accesses).
Our construction. To eliminate such leakage, we identify
data-dependent sub-procedures of our algorithms, and appropri-
ately pad out the number of accesses made in these procedures
to worst-case bounds that depend only on the number of key-
value pairs in the map. For example, when an algorithm initiates
a depth-first search, we ensure that the search terminates after
accessing exactly 1.44 log(n) (real or dummy) nodes, which
is the worst-case height of an AVL tree with n nodes.

Next, we design our algorithms so that that we can always
predict whether or not a given dummy access needs to return
a cached node. We can then take advantage of the fine-grained
DODS interface to avoid unnecessary dummy operations.
Below we summarize our doubly-oblivious construction (again
omitting deletions for space reasons, as in Section IV-C).
• DOSM.Init: Equals OSM.Init, but calls DODS.Init instead

of ODS.Init.
• DOSM.Size: Instead of halting the depth-first search when

the first k-node is found, perform additional DODS.Access
calls with input read(dummy = 1, isCached = ?, k) to
ensure that DORAM.ReadBlock is invoked 1.44 log(n) times
in total (the worst-case height of an AVL tree with n nodes).

• DOSM.Insert: Modify the depth-first search used to find the
insertion location so that DORAM.ReadBlock is invoked
1.44 log(n) times (as in DOSM.Size above). Also, in the
retracing step, modify the rebalancing procedure to perform
the same (real or dummy) operations regardless of the type
of rebalancing required.

• DOSM.Find: Recall that OSM.Find has two steps: find paths
to the i-th and j-th k-nodes (nodei and nodej from here on)

and fetch all k-nodes in the subtree bounded by these. We
describe how both steps can be made doubly-oblivious.
1) Find path to s-th k-node: Modify the depth-first search

so that DORAM.ReadBlock is invoked 1.44 log(n) times
(as in DOSM.Size above).

It is important to ensure that retrieving the path to nodej
after retrieving the path to nodei does not reveal where
the two paths diverge. This happens when the search
retrieves common nodes from the cache and not the server,
and is prevented by invoking DODS.Access with input
read(dummy = 0, isCached = ?, k) (this ensures that a
ReadBlock is always performed).
2) Retrieve required nodes: Find the node at which the

paths to nodei and nodej diverge (as in OSM.Find), and
then, instead of performing a simple breadth-first search
from this node, run a modified breadth-first search that
(a) uses an oblivious priority queue instead of a simple
first-in-first-out queue, and (b) terminates after visiting
2 · 1.44 log(n) + j − i nodes. Initialize this queue with
(real and dummy) keys of the nodes on paths to nodei
and nodej , in that order. When fetching the next node
from the queue, add the key of the appropriate child
to the queue with an “exploration priority” that decides
when the node gets visited. We assign priorities so that
nodes on the bounding paths are visited first, and k-nodes
in the intersection afterwards.

VI. EVALUATION AND APPLICATIONS

Implementation. We realized singly- and doubly-oblivious
versions of Oblix using ∼ 10 K lines of Rust code, split across
libraries for singly- and doubly-oblivious Path ORAM, ODS,
and OSM.
Evaluation. We evaluate Oblix via a set of benchmarks
(Sections VI-A and VI-B) and via three applications: (i) private
contact discovery for the Signal messaging service (Sec-
tion VI-C); (ii) private retrieval of public keys in Key Trans-
parency (Section VI-D); (iii) oblivious searchable encryption
(Section VI-E). In each application, our results show that
Oblix is competitive with, and sometimes also improves upon,
alternate approaches with similar security guarantees. Overall,
our work shows that ORAM-based techniques, often eschewed
for their perceived large costs, can scale to large databases
(tens of millions of records) and can be effectively applied to
concrete problem domains.

We emphasize that this paper focuses on achieving low
latency, and so our experiments focus on that. In many settings
throughput is also important, and we leave to future work the
problem of achieving high throughput as well. Our techniques
ultimately leverage properties of Path ORAM, for which strong
concurrency properties, exemplified in systems such as TaoStore
[56], are known. We thus believe that improving throughput is
an exciting, and potentially viable, future project.
Experimental setup. All experiments use a server with an
Intel Xeon E3-1230 v5 CPU at 3.40 GHz with 8 logical cores,
running Ubuntu 16.04. The CPU supports the Intel SGX v1
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Figure 5: Latency of Path DORAM operations with an increasing number of
initial blocks, across different block sizes B.

instruction set, and the total memory available to enclaves is
limited to around 94 MB. In experiments with Signal and Key
Transparency, we initialize Oblix with the maximum number
of key-value pairs that fit within memory, which is 64 GB
in our testbed. We note that production servers are typically
equipped with larger memory sizes; we therefore extrapolate the
performance of Oblix for larger database sizes as well. Further,
since the size of key-value pairs differs across applications, we
configure the Path ORAM implementation underlying Oblix
with a different block size per application. Finally, before each
experiment, we warm up the ORAM stash via dummy requests
in order to capture steady-state performance of Oblix.

A. Path DORAM microbenchmarks

We begin by evaluating the performance of our Path DORAM
scheme (see Section V-A). Recall that during initialization,
DORAM.Init is provided as input a maximum storage size m
(in blocks), and a list of n initial blocks (with n ≤ m). We
evaluate the performance of a single operation (a ReadBlock
followed by a Evict) in our DORAM scheme for n = m ∈{

101, . . . , 107
}

and for block sizes from 8 to 512 bytes. In
Fig. 5, we report the average latency over 1000 operations;
this latency is between tens to hundreds of microseconds.
Comparison with ZeroTrace. To put these numbers into
perspective, we compare the performance of our scheme with
that of ZeroTrace [57], which also implements a DORAM
scheme within a hardware enclave. We provide a qualitative
comparison between the two systems in Section VII; here, we
focus on performance. The source code of ZeroTrace is not
publicly available, and so we can only compare our results
with the ones reported in the paper. However, both our testbeds
use machines of similar capabilities.

Unlike Oblix, which uses the ODS framework to outsource
the client’s position map, ZeroTrace recursively stores the
position map in smaller ORAMs. Each ZeroTrace ORAM
operation thus requires recursive position map lookups. We
estimate our DORAM scheme’s performance in this setting
by measuring the access times for each level of recursion
and taking their sum. Our findings underscore the efficiency
of our Path DORAM protocols compared to ZeroTrace: with
107 blocks and a block size of 8 bytes, an ORAM operation

in Oblix takes 0.47 ms compared to ZeroTrace’s 1.22 ms to
1.32 ms (based on the choice of the underlying ORAM scheme),
representing a speedup of ∼ 2.5×. The gap widens further as
the block size increases: for a block size of 512 bytes, Oblix
takes 0.54 ms and is 4.5× to 6.5× faster than ZeroTrace.

B. DOSM microbenchmarks

We evaluate the latency of searches and inserts in our doubly-
oblivious OSM scheme (see Section V-C). Our experiments
show that latency is a few milliseconds, even when the database
contains millions of key-value pairs.

Searches. The cost of a search query depends on (i) the
total number of key-value pairs, and (ii) the number of values
requested for the queried key. We experimentally measure
latency as a function of these parameters, and report the average
latency across 100 iterations. All experiments use keys and
values of 8 bytes each, and use an underlying Path ORAM
implementation with a block size of 160 bytes.
• Increasing the number of key-value pairs. We initialize an

OSM scheme with up to 224 key-value pairs. We then issue
search queries for random keys, requesting a single value
per key. Fig. 6 shows that search time is logarithmic in
the number of key-value pairs. Moreover, even with 224

key-value pairs, search time remains low at 4.4 ms.
• Increasing the number of requested values. We initialize

an OSM scheme with 214 keys each mapped to 210 values,
for a total of 224 key-value pairs. We then issue queries
for random keys, fetching an increasingly-large interval of
values. Fig. 7 shows that search time is linear in the size
of the interval. (Fetching a single value merely requires the
client to fetch a single path in the search tree, as opposed to
two paths in the general case of fetching intervals of values.)

• Increasing the number of values per key. We initialize an
OSM scheme with 2i keys each mapped to 224−i values,
for a total of 224 key-value pairs. We then issue queries
for random keys, fetching an interval of 10 values. Our
experiments confirm that search time does not depend on
the number of values per key: across different choices of i,
the latency is steady at 12.7 ms.

Inserts. We initialize an OSM scheme with up to 224 key-
value pairs, and then measure the cost of inserting a random
key-value pair. Fig. 8 shows that insert time is logarithmic in
the number of key-value pairs in the database. Moreover, even
with 224 key-value pairs, insert time remains low at 5.4 ms.

C. Private contact discovery in Signal

Signal [2] is a popular messaging service that offers end-to-
end message encryption. When a user downloads the Signal
application on a phone, the application communicates with
Signal servers to determine which contacts on the user’s phone
use Signal; similarly, when the user adds new contacts to the
phone, the application must determine which of these use Signal.
This process is known as contact discovery. The importance
to ensure its privacy (Signal servers do not learn the contact
list in the user’s phone) has already been documented [44].



216 217 218 219 220 221 222 223 224

Total number of key-value pairs

1

2

3

4

5
Ti

m
e 

to
 re

ad
 (m

s)

Figure 6: Search time is logarithmic in the
number of key-value pairs.

0 10 20 30 40 50 60
Number of values requested

5

10

15

20

25

Ti
m

e 
to

 re
ad

 (m
s)

Figure 7: Search time is linear in the size of
the requested interval.

216 217 218 219 220 221 222 223 224

Total number of key-value pairs

2

3

4

5

6

Ti
m

e 
to

 in
se

rt 
(m

s)

Figure 8: Insert time is logarithmic in the
number of key-value pairs

Signal’s approach. Signal makes contact discovery private
via a method based on Intel SGX [44, 3], where the user sends
a list of encrypted contacts and Signal servers compare these,
within the hardware enclave, against the database of all Signal
users. In order to prevent leakage through accesses to internal
memory, the enclave first converts the list into an oblivious
hash table, and then iterates over all Signal users, looking up
each one in the hash table. Overall, if the user sends a list with
m contacts and Signal has N users, the latency is O(m2 +N);
note that the latency is linear in the number of all Signal users.

Our approach. We describe how to use Oblix to achieve pri-
vate contact discovery with latency O(m logN); in particular,
we do not perform a linear scan of all Signal users. This is an
asymptotic improvement because N � m (Signal has millions
of users but any user typically has no more than several hundred
contacts on a phone). Our experiments below show that these
asymptotic gains yield efficiency gains in practice.

We use Oblix to construct, and then maintain, an oblivious
index over all Signal users. When a user submits a list of
contacts, the hardware enclave iterates over the contacts in the
list, looking up each one in the oblivious index. As a result,
latency is linear in the number contacts in the list (m), but
only logarithmic in the number of all Signal users (N ).

Experimental comparison. We consider databases of up to
N = 128 M users. Each user is identified by a phone number
represented as an 8-byte integer (as in Signal’s implementation);
we thus initialized the index with 8-byte keys mapped to null
values. We set the Path ORAM block size to 160 bytes.

We compare the performance of Signal’s approach and our
approach by issuing contact discovery requests with lists of
different sizes (m = 1, 10, 100, 1000), and measure the latency
to process the request at the server. We report the average time
across 100 iterations per request.

Fig. 9 compares costs of Signal’s approach and our approach.
The cost in Signal’s approach comes from: (i) converting
the submitted list into an oblivious hash table, and then
(ii) performing all the lookups. As the total number N of users
grows, the latter dominates and the total cost increases linearly
with N . When N = 128 M, the latency is 950− 830 ms.

Fixing the number m of contacts submitted by the user,
the cost in our approach grows logarithmically in N , and so
eventually becomes lower than the cost in Signal’s approach,
as N grows; the crossover point depends on m. E.g., fixing
m = 100, if N = 88 M then both approaches take ∼ 579 ms;
if N = 128 M then Signal’s approach degrades to 835 ms while
our approach only takes 591 ms (an improvement of ∼ 30%).
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Figure 9: Cost of private contact discovery in Signal vs. Oblix with an
increasing number of registered users, for address books of sizes 1 to 1000.
Dotted segments are extrapolations. Both axes scale logarithmically.

Fig. 9 also extrapolates the cost of both approaches for
databases larger than 128M users. With 1 billion users (N =
109), if m = 1000 then Signal’s approach and our approach
have similar costs (7.4 s and 7.6 s respectively); but if m = 100,
then our approach is ∼ 9× faster (0.74 s vs. Signal’s 6.7 s).

Fig. 9 further highlights the benefit of our approach for
incremental (as opposed to initial) contact discovery, where
a user inserts new contacts into the phone and the Signal
application must discover which of these are Signal users.
While for initial contact discovery m = 100 and m = 1000 are
representative values, for incremental contact discovery smaller
values such as m = 1 and m = 10 are more appropriate. For
these, our approach is up to two orders of magnitude faster.
For example, when m = 1 and N = 128 M, our approach is
∼ 140× faster (5.9 ms vs. Signal’s 832 ms).

D. Anonymizing Google’s Key Transparency

Google’s Key Transparency (KT) [1, 46] is a scheme for
ensuring integrity of key lookups: users can safely fetch other
users’ public keys from an untrustworthy key server. To achieve
this, the service maintains a Merkle prefix tree over all user
keys and gossips the root hash among the users; up to 2d keys
can be supported if the tree height is d (d = 256 in Google’s
implementation). When a user requests a public key, the service
returns a proof of integrity that consists of the siblings of all the
nodes in the path from the root to the leaf containing the public
key. However, KT does not provide anonymity: when the server
answers a request, it knows the identity of the user whose key
it returns. We describe how to use Oblix to anonymize KT,
with an order-of-magnitude improvement in cost compared to
a baseline approach with the same level of security.
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Baseline approach. A simple baseline approach, similar in
spirit to Signal’s approach for private contact discovery (see
Section VI-C), is a lookup that obliviously scans the whole
Merkle tree, within the hardware enclave. Namely, we first
initialize an empty array with d buckets; each bucket has a real
slot and a dummy slot. We then iterate over all nodes in the
Merkle tree as follows: given a node at depth j, if the node is
part of the proof we write its value to the real slot in the j-th
bucket; otherwise, we write it to the dummy slot. (Writing to
either slot can itself be made oblivious.) After iterating over all
nodes, the array will contain the proof for the desired public
key. Overall, this approach has latency O(N), where N is the
total number of keys in the Merkle tree.

Our approach. We use Oblix to achieve anonymity with
lookup latency O(d logN), a significant asymptotic gain over
the baseline approach. The idea is simple: we store all Merkle
tree nodes in an oblivious index in which keys are node
identifiers and each key is mapped to a hash. As in the plaintext
case, lookup consists of retrieving O(d) nodes from the tree.

Experimental comparison. We consider databases of up to
N = 20 M public keys. We use 256-bit ECDSA public keys
and use SHA-512/256 hashes to build a Merkle tree over the
keys, in line with Google’s implementation of KT. This results
in a Path ORAM block size of 256 bytes. We compare the
performance of the baseline approach and our approach by
issuing 100 lookup requests and reporting their average latency.

Fig. 10 compares the baseline approach and our approach.
The cost of the baseline approach is linear in N (number of
public keys), while that of our approach is logarithmic in N . For
small N , the baseline approach has lower cost; for N = 20 M,
both approaches have comparable costs (2.1 s with Oblix vs.
2.3 s for the baseline); as N increases further, our approach
has significantly lower cost. For example, for N = 40 M our
approach is 2× faster (2.3 s vs. 4.6 s) and for N = 320 M our
approach is ∼ 14× faster (2.6 s vs. 37 s). These latencies are
on the order of seconds, and thus impact user experience.

E. Oblivious searchable encryption

Searchable encryption (SE) [62] enables a client to outsource
encrypted data to an untrusted server, while still being able
to search this remote data with small cost (in latency and
bandwidth). Several works [11, 12, 17, 36] extend this
functionality to support inserts and deletes to the data.

Below we first informally describe how to use Oblix to
obtain an efficient SE scheme that supports oblivious searches,
inserts, and deletes while further enabling the client to hide
result sizes. We then evaluate our scheme’s performance on
real data. (For a formal definition, construction, and proofs for
our SE scheme, see the full version.)

Our SE scheme. The plaintext data structure underlying our
SE scheme is a scored inverted index (SII). A SII maps a key k
to a (potentially empty) list of score-value pairs [(si, vi)]

n
1 :=

SII[k] that is sorted in descending order according to the scores
si. The SII is parameterized by an integer r that dictates the
“return size” of searches, as we now explain. The data structure
supports search, insert and delete operations. A SE scheme
SE := (Init, Insert,Delete,Find,Update, S) allows a client to
outsource storage of a SII to an untrusted server while still
securely preserving search, insert, and delete functionality.
• Initialization: SE.InitS(m,SII)→ st. On input a maximum

number m of key-value pairs, and a scored inverted index
SII, convert SII into a sorted multimap Map, and invoke
OSM.Init(m,Map) to get OSM state stOSM. This initializes
the server S. Output the initial client state st := stOSM.

• Find: SE.FindS(mut st, k, ω) → [(si, vi)]
r
1. On input

client state st, keyword k, and search offset ω, first
compute indices i := ωr and j := (ω + 1)r and
then output OSM.FindS(mut st, k, i, j). The output equals
SII[k][ωr, . . . , (ω + 1)r].

• Insert: SE.InsertS(mut st, [(ki, si)]
n
1 , v) → ⊥. On input

client state st, key-score list [(ki, si)]
n
1 , and value v, add

(si, v) to SII[ki] (if not present) for every i by invoking
OSM.InsertS(mut st, ki, (si, v)).

• Delete: SE.DeleteS(mut st, [(ki, si)]
n
1 , v) → ~b. On in-

put value v and key-score list [(ki, si)]
n
1 , remove (si, v)

from SII[ki] (if present) for every i by invoking
OSM.DeleteS(mut st, ki, (si, v)), and output a boolean vec-
tor indicating whether the i-th removal was successful.

Evaluation on Enron dataset. We evaluate the latency of
Oblix on the entire Enron email dataset [19], consisting of
∼ 528 K emails. We extracted keywords from this dataset by
first stemming the words using standard stemming techniques,
and then removing 675 stopwords. We next filtered out any
words that contained non-alphabetic characters, or were ≥ 20
or ≤ 3 characters long. This gave us a total of ∼ 259 K
keywords, which we used to create an inverted index having
∼ 38 M key-value pairs. We initialize the underlying Path
ORAM implementation with a block size of 200 bytes. We
then measure the cost of searches and inserts in the index and
report the average of 100 iterations.
• Search. We search for the ten highest-ranking results for

the keyword appearing in the largest number of documents
(∼ 145 K). We observe that on average, the search takes
20.1 ms. For larger (or smaller) intervals, the time increases
(or decreases) proportionately.

• Insert. We construct a new document consisting of the 100
most popular keywords. We then assign this document an
unused document identifier, and populate the inverted index



with each of its constituent keywords. We observe that on
average, the total time for inserting the 100 key-value pairs
into the index is ∼ 775 ms, or 7.75 ms per keyword.

VII. RELATED WORK

There is a rich literature on encrypted search indices and
oblivious algorithms. We focus on works most relevant to us:
doubly-oblivious ORAM, systems that combine obliviousness
and hardware enclaves, and schemes for encrypted search.

A. Doubly-oblivious RAM

Most prior work [18, 21, 25, 38, 67, 72, 73, 78] on doubly-
oblivious RAM focuses on using ORAM for secure multi-party
computation (MPC) in the RAM model. These works focus
on challenges arising from the interactive and communication-
intensive nature of MPC. For example, one line of work [25,
38, 72, 73] expresses asymptotically efficient Tree ORAM
algorithms as circuits with small size. Another line of work
[18, 78] reduces online protocol costs by considering different
ORAM paradigms that are asymptotically worse, but offer
better concrete performance in the MPC setting. The trade-offs
made by these works (such as optimizing for circuit size, or
using asymptotically worse protocols) are not always effective
in our setting of plain execution, where accessing memory is
more expensive than performing computations.

B. Obliviousness on hardware enclaves

General-purpose programs. Several works [60, 61, 68]
modify enclaved programs to endow them with page-level
obliviousness. Such techniques can be composed with ours to
obtain oblivious programs for functionalities beyond search.
ORAM. ZeroTrace [57] uses a doubly-oblivious Path ORAM
client (corresponding to the naive client outlined in Sec-
tion V-A) in an SGX enclave to get an oblivious memory
controller. They use this to implement oblivious data structures.
However, unlike Oblix’s highly-optimized doubly-oblivious
data structures, their data structures incur linear overhead
per access. They also do not implement an efficient doubly-
oblivious initialization algorithm, precluding applications like
private contact discovery or private public-key retrieval.

ObliDB [20] uses Path ORAM and SGX enclaves to
construct an oblivious database, but some of their techniques
do not seem to be doubly-oblivious.

Works such as GhostRider [41], Tiny ORAM [22], or Shroud
[43] propose combining ORAM techniques with custom trusted
hardware. These systems use specialized hardware, whereas
our construction utilizes widely available hardware enclaves.
Furthermore, they provide poor efficiency (slow insertion and
deletion when hiding size information) and security guarantees
(result sizes leak) in the context of search.
Private information retrieval and private set intersection.
Prior works attempt to use ORAM on trusted hardware of
different kinds to achieve PIR [7, 70, 76, 77], but do not
achieve scalable implementations. Tamrakar et al. [66] propose
a protocol that utilizes hardware enclaves to achieve private
set intersection. While their implemented system is quite

performant, it is specialized for membership testing, and cannot
support richer applications like anonymous Key Transparency
or oblivious searchable encryption.

C. Search-specific schemes

Oblivious schemes. TWORAM [24] uses garbled RAM
techniques to support oblivious search. Naveed [50] proposes
the idea of hiding access patterns by storing an inverted index
in the oblivious map of [74]. However, neither work supports
inserts/deletes, neither hides result sizes, and neither provides a
system design or implementation. Even if implemented, these
schemes would suffer from the overhead of classical ORAM
protocols (as discussed in Section I). Moataz and Blass [48]
achieve substring search using ORAM techniques; one could
use their techniques to extend our work to substring search.

Chan et al. [13] propose hiding result sizes via a new differ-
ential obliviousness technique, but their security guarantees are
incomparable to ours. Asharov et al. [5] construct an ORAM
scheme with good locality but weaker obliviousness guarantees,
and use this to construct an oblivious SE scheme that does not
hide result sizes. Neither scheme considers doubly-oblivious
client algorithms, and neither provides an implementation.
Non-oblivious schemes. Fuhry et al. [23] use a enclave-based
BTree-based search index to realize a searchable encryption
scheme, but do not hide access patterns nor result sizes.
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APPENDIX A
CONSTRUCTION OF AN OSM SCHEME

We now provide details for our construction of an OSM sch-
eme from Section IV-C. We first provide detailed pseudocode
(Fig. 11) for our construction, and then provide correctness
and security proofs for the same.

Theorem 1. The OSM scheme from Section IV-C is correct
as per the security definition in Section IV-B.

Proof. The oblivious sorted multimap scheme is correct assum-
ing the correctness of the plaintext sorted multimap and the
oblivious data structures framework of [74] are correct. It is
easy to verify the correctness of the plaintext sorted multimap,
since it is a small modification to order statistic trees and
AVL trees. The sorted multimap also satisfies Definition 1, and
hence can be used with the ODS framework.

Theorem 2. The OSM scheme from Section IV-C is secure as
per the security definition in Section IV-B.

Proof. We construct a simulator Sim (Fig. 15) that uses the
ODS simulator SimODS as a black box. The view of an ad-
versary interacting with the simulator oracle SIdeal instantiated

with Sim is indistinguishable from an adversary interacting with
SReal because the simulator pads the number of access to the
appropriate amount, and so the adversary sees the same number
of read and write memory accesses to the server regardless of
the query input.

Sim.InitS(m, `k, `v):
1) l := calc_node_size(`k, `v).
2) stODS ← SimODS.InitS(m, l).
3) Store st := (`k, `v, stODS).

Sim.SizeS():
1) Let b := 1.44 log(m).
2) SimODS.AccessS(mut stODS, b).

Sim.InsertS():
1) Let b := 1.44 log(m) + 1.
2) SimODS.AccessS(mut stODS, b).

Sim.FindS(r):
1) Let b := 2× 1.44 log(m) + r.
2) SimODS.AccessS(mut stODS, b).

Figure 15: Simulator for our OSM construction.

APPENDIX B
SECURITY OF PATH ORAM

Security for Path ORAM is defined via two experiments:
one in which an adversary interacts with an oracle SReal acting
as a proxy to the scheme, and another in which the adversary
interacts with an oracle SIdeal that acts as a proxy to a simulator
Sim that only gets some of the inputs. Both oracles expose to
the adversary the same interface (see Fig. 16): the adversary
can make an Init query that specifies the initial blocks (and a
maximum number of blocks), and then can make any number
of Read or Evict queries, with the restriction that the input
to any Evict query is the list of all leaves fetched since the
previous such call. The adversary may observe accesses to the
server made by the oracles as a result of these invocations. Path
ORAM is secure if the adversary cannot distinguish between
the two experiments.

APPENDIX C
SECURITY OF AN ODS SCHEME

Security of an ODS scheme defined via two experiments:
one in which an adversary interacts with an oracle SReal

OSM.InitS(m,Map):
1) Let Tree = Map.New();
2) For (k, v) ∈ Map: Tree.Insert(k, v).
3) Let rt = Tree.root().
4) Let i = 1.
5) If rt 6= ⊥, for each node in Tree:

a) If node = rt: irt = i.
b) i := i + 1.

6) Let (ptrrt, stODS) := ODS.Init(m,Tree, irt).
7) Output st = (ptrrt, rt, stODS).

OSM.SizeS(mut st, k):
1) Let rootKey := st.rt.key.
2) Let ptr := st.ptrrt.
3) ODS.StartS(mut st.stODS, st.ptrrt)
4) Let size := 0.
5) While rootKey 6= ⊥:

a) Let curNode← ODS.AccessS(mut st.stODS, read(ptr)).
b) If rootKey = k: set size := curNode.size(); break.
c) Else if rootKey < k:

i) rootKey := curNode.leftKey().
ii) ptr := curNode.lChild().

d) Else:
i) rootKey := curNode.rightKey().

ii) ptr := curNode.rChild().
6) Let bound := 1.44 · log(osmClient.treeSize).
7) st.ptrrt := ODS.FinalizeS(mut st.stODS, st.rt, bound).
8) Output size.

OSM.InsertS(mut st, k, v):
1) Let ptrrt := st.ptrrt.
2) Let stODS := st.stODS.
3) Let (rt′, . . . )← OSM.InsHelperS(mut st, k, v, ptrrt) (Fig. 13).
4) Let pad := 1.44 · log(osmClient.treeSize) + 1.
5) st.ptrrt := ODS.FinalizeS(mut stODS, rt′, pad).

OSM.FindS(st, k, i, j):
1) Let ptrrt := st.ptrrt.
2) Let stODS := st.stODS.
3) Let (rt′, #—v )← OSM.FindHelperS(mut st, k, v, ptrrt) (Fig. 12).
4) Let pad := 1.44 · log(osmClient.treeSize) + 1.
5) st.ptrrt := ODS.FinalizeS(mut stODS, rt′, pad).
6) Output #—v .

Figure 11: Construction of a sorted multimap.
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OSM.FindHelperS(mut st, k, i, j)
1) Let stODS := st.stODS.
2) if rootKey 6= ⊥:

a) Find path to i-th k-node:
lower← OSM.GetAtIndexS(mut st, k, i).

b) Find path to j-th k-node:
upper← OSM.GetAtIndexS(mut st, k, j).

c) Find node with index i: first := last(lower).
d) Find node with index j: last := last(upper).

Compute the node at the intersection of the two paths:
e) Let intersection := ⊥.
f) For i ∈ {0, . . . ,min(lower.len, upper.len)}:

if lower[i] = upper[i]: set intersection := lower[i].

Find nodes that lie between the two paths:
g) If intersection 6= ⊥:

i) Initialize empty queue workQueue.
ii) Initialize empty list of matching nodes results.

iii) workQueue.push(intersection.ptr).
iv) While workQueue is not empty:

A) Let ptr := workQueue.pop().
B) curNode := ODS.AccessS(mut stODS, read(ptr)).
C) If curNode < first and curNode < last:

workQueue.push(curNode.rChild).
D) Else if curNode > first and curNode > last:

workQueue.push(curNode.lChild).
E) Else:

workQueue.push(curNode.rChild);
workQueue.push(curNode.lChild).

v) If (first ≤ curNode ≤ last) and (curNode.key = k):
result.push(curNode).

h) Return results.
3) Else, return empty list.

Figure 12

OSM.InsHelperS(mut st, k, v, ptr)
1) Let stODS := st.stODS.
2) if ptr 6= ⊥:

a) let curNode := ODS.AccessS(mut stODS, read(ptr)).
b) If k = curNode.key and v = curNode.value: return.
c) Else if k < curNode.key:

i) Let
(child, kc, size, keySize) = OSM.InsHelperS(mut st, k, v, curNode.lChild).

ii) If curNode.key = kc: curNode.lSize := size.
iii) If curNode.key = k: curNode.lSize := size; keySize := curNode.size.
iv) curNode.lChild := ptrc.
v) ODS.AccessS(mut stODS, write(ptr, curNode)).

vi) Return (BalanceS(mut st, curNode.key, ptr), keySize).
d) Else:

i) Let
(child, kc, size, keySize) = OSM.InsHelperS(mut st, k, v, curNode.rChild).

ii) If curNode.key = kc: curNode.rSize := size.
iii) If curNode.key = k: curNode.rSize := size; keySize := curNode.size.
iv) curNode.rChild := ptrc.
v) ODS.AccessS(mut stODS, write(ptr, curNode)).

vi) Return (BalanceS(mut st, curNode.key, ptr), keySize).
3) Else:

a) Construct new node

node :=

 Key k Value v
lChild = ⊥ rChild = ⊥
lSize = 0 rSize = 0
leftHeight = 0 rightHeight = 0

.

b) st.treeSize = st.treeSize + 1.
c) Let ptrc ← ODS.AccessS(mut stODS, ins(node)).
d) (node.key, ptrc, node.size(), node.size())

Figure 13

OSM.GetAtIndexS(mut st, k, i)
1) Let stODS := st.stODS.
2) Let curKey := st.rootKey.
3) Let ptr := st.ptrrt.
4) Initialize empty list path.
5) While curKey 6= ⊥:

a) Let curNode := ODS.AccessS(mut stODS, read(ptr)).
b) If the current node is a k-node, i.e. k = curKey:

i) If i = curNode.lSize():
A) path.Insert(curNode)
B) Break out of loop.

ii) Else if i < curNode.lSize():
A) curKey := curNode.leftKey().
B) ptr := curNode.lChild().

iii) Else:
A) curKey := curNode.rightKey().
B) ptr := curNode.rChild().
C) i := i− curNode.lSize() + 1.

Ignore non-k-nodes for indexing purposes.
c) Else if k < curKey:

i) curKey := curNode.leftKey().
ii) ptr := curNode.lChild().

d) Else:
i) curKey := curNode.rightKey().

ii) ptr := curNode.rChild().
e) path.Insert(curNode)

6) Return path.

Figure 14

implementing the ODS scheme, and another in which he
interacts with an oracle SIdeal that acts as a proxy to a simulator
Sim that only gets some of the inputs. Both oracles expose to
the adversary the same interface (see Fig. 17): the adversary
first invokes the oracle on Init, and then makes any number

Security
SReal SIdeal

Init(m, [bli]
n
1 ) store

st← ORAM.InitS(m, [bli]
n
1 )

store
st← Sim.InitS(m, |bl1|)

Read(bid) ORAM.ReadBlockS(mut st, bid) Sim.ReadBlockS(mut st)

Evict([lfi]
n
1 ) ORAM.EvictS(mut st, [lfi]

n
1 ) Sim.EvictS(mut st, n)

Figure 16: Real and ideal oracles for Path ORAM.

of Access calls to the oracle. The adversary is allowed to
observe the server accesses made by the oracles as a result of
these invocations. An ODS scheme is secure if the adversary
cannot distinguish between the two experiments.

APPENDIX D
CONSTRUCTION OF PATH DORAM

We expand upon our description of Path DORAM in
Section V-A by providing pseudocode for our construction
in Fig. 18.



Security
SReal SIdeal

Init


DS

[DSopj ]
s
1

m
[nodei]

n
1

irt

 1) Check that sequentially executing operations in [DSopj ]
s
1

results in nodes [nodei]
n
1 with root at index irt.

2) Store (st, ptrrt)← ODS.InitS(m, [nodei]
n
1 , irt).

Store st← Sim.InitS(m, |Node1|).

Access(DSop)

1) Start ODS: ODS.StartS(mut st, ptrrt).
2) Invoke the data structure DS on DSop, replacing plaintext

pointer accesses with corresponding ODS pointer accesses.
3) Let the current root node be node.
4) Store ptr′rt ← ODS.Finalize(mut st, node, bound).

Sim.AccessS(mut st, bound).

Figure 17: Real and ideal oracles for ODS.

DORAM.ReadBlockS(mut st, bid, lf)→ bl
1) Fetch from S the list of buckets Bu that are on the path to lf.
2) Let mut ans be a dummy block.
3) For each bucket bu ∈ Bu:

a) For each i ∈ {1, . . . , C}:
i) Let cond := (bu[i].bid = bid).

ii) OblSwap(cond, ans, bu[i])
b) Insert bu into st.ImplicitBuckets.

4) Insert ans into st.ExplicitBlocks and output ans.

DORAM.InitS(m, [bli]n1 )
1) Let treeSize := ComputeTreeSize(m,C).
2) Let layer size (in buckets) s := (treeSize + 1)/2.
3) Initialize empty list of buckets buckets.
4) Initialize block list blocks := [bli]n1 .
5) For each layer in the ORAM tree:

a) Let k := blocks.len().
b) Let D be a list of sC dummy blocks.
c) For the i-th chunk of C blocks in D, set the node of each block in this

chunk to be the i-th tree node in the current layer.
d) Append D to blocks (so that blocks.len() = k + sC).
e) Annotate each block in blocks with a boolean flag indicating whether

or not it is dummy.
f) Obliviously prepare blocks for bucketing: obliviously sort blocks so

that all same-node blocks are grouped together, and within every such
group, dummy blocks are sorted to the end of the group. The groups
are sorted in ascending node order.

g) Let ctr := 0.
h) Let cur_node := ⊥.
i) For each bl in blocks, try to assign it to a bucket in current layer:

i) Let b := bl.node = cur_node.
ii) ctr := b · (ctr + 1).

iii) cur_node := bl.node.
iv) bl.in_bucket := ctr < C;

j) Obliviously collect all bucketed blocks together: obliviously sort
blocks so that blocks with in_bucket = false are last, and the remaining
blocks are sorted in ascending order of their node.

k) Construct s buckets from the first sC blocks in blocks, and append
these to buckets.

l) Remove bucketed blocks: blocks := blocks[sC . . . sC + k].
m) For each remaining block bl in blocks, update its assigned node:

bl.node := bl.node.parent().
n) Update layer size: s := s/2.

6) Create ExplicitBlocks from the remaining blocks in blocks.
7) Encrypt and upload each bucket in buckets to S.
8) Output st := (ImplicitBuckets = ⊥,ExplicitBlocks).

DORAM.EvictS(mut st, [lfi]n1 )
1) If st.NumWrites = 0 (mod t): DORAM.Evicts

S(st, [lfi]n1 ).
2) Else: DORAM.Evictf

S(st, [lfi]n1 ).
3) Set st.NumWrites := st.NumWrites + 1.

DORAM.Evicts
S(mut st, [lfi]n1 )

1) Initialize blocks := st.ExplicitBlocks.
2) Append blocks (in each bucket) in st.ImplicitBuckets to blocks.
3) Let Nodes be the list of nodes comprising paths to [lfi]n1 .
4) Initialize bucket fullness map BuFu so that for each node ∈ Nodes,

BuFu[node] = 0.
5) Assign blocks to buckets: for each block bl in blocks:

a) Let assigned_node := ⊥ and let assigned_flag := 0.
b) For each node node in path to bl.lf:

i) Let is_free := (BuFu[node] 6= ⊥) ∧ (BuFu[node] < C).
ii) Let cond := is_free ∧ ¬ assigned_flag.

iii) Increment BuFu[node] by cond.
iv) OblSwap(cond, assigned_node, node).
v) OblSwap(cond, assigned_flag, 1).

c) Set bl.node := assigned_node.
6) Append dummy blocks: Append |ImplicitBuckets| · C dummy blocks

(having node ⊥) to blocks.
7) Construct buckets: obliviously sort blocks by bl.node, sorting blocks

with node ⊥ to the end.
8) From the first |Nodes| · C elements of blocks, construct the buckets to

be written back. Truncate the remainder of blocks at at maximum stash
size, and insert these blocks into st.ExplicitBlocks.

DORAM.Evictf
S(mut st, [lfi]n1 )

1) Let Nodes be the list of nodes comprising paths to [lfi]n1 .
2) Initialize bucket fullness map BuFu so that for each node ∈ Nodes,

BuFu[node] = 0.
3) Assign blocks to buckets: for each block bl in st.ExplicitBlocks:

a) Let assigned_node := ⊥ and let assigned_flag := 0.
b) For each node node in path to bl.lf:

i) Let is_free := BuFu[node] 6= ⊥ ∧ BuFu[node] < C.
ii) Let cond := is_free ∧ (assigned_flag = 0).

iii) Increment BuFu[node] by cond.
iv) OblSwap(cond, assigned_node, node).
v) OblSwap(cond, assigned_flag, 1).

c) Set bl.node := assigned_node.
4) Insert blocks into buckets:
5) Initialize empty list blocks.
6) Append all blocks in ExplicitBlocks to blocks.
7) For each bucket bu ∈ st.ImplicitBuckets:

a) For each block bl in bu:
i) Set bl.node := bu.node.

ii) Insert bl into blocks.
8) Construct buckets from blocks by oblivious sorting as in Evicts.
9) Write back constructed buckets to S, and insert any remaining blocks into

st.ExplicitBlocks.

Figure 18: Algorithms for Path doubly-oblivious RAM (for bucket size C).
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