
Hackers vs. Testers: A Comparison of Software
Vulnerability Discovery Processes

Daniel Votipka, Rock Stevens, Elissa M. Redmiles, Jeremy Hu, and Michelle L. Mazurek
Department of Computer Science

University of Maryalnd
College Park, Maryland 20742

Email: {dvotipka,rstevens,eredmiles,jhu,mmazurek}@cs.umd.edu

Abstract—Identifying security vulnerabilities in software is a
critical task that requires significant human effort. Currently,
vulnerability discovery is often the responsibility of software
testers before release and white-hat hackers (often within bug
bounty programs) afterward. This arrangement can be ad-hoc
and far from ideal; for example, if testers could identify more
vulnerabilities, software would be more secure at release time.
Thus far, however, the processes used by each group — and how
they compare to and interact with each other — have not been
well studied. This paper takes a first step toward better under-
standing, and eventually improving, this ecosystem: we report
on a semi-structured interview study (n=25) with both testers
and hackers, focusing on how each group finds vulnerabilities,
how they develop their skills, and the challenges they face. The
results suggest that hackers and testers follow similar processes,
but get different results due largely to differing experiences and
therefore different underlying knowledge of security concepts.
Based on these results, we provide recommendations to support
improved security training for testers, better communication
between hackers and developers, and smarter bug bounty policies
to motivate hacker participation.

I. INTRODUCTION

Software security bugs, also known as vulnerabilities, con-
tinue to be an important and expensive problem. There has
been significant research effort toward preventing vulnerabilities
from occurring in the first place, as well as toward automatically
discovering vulnerabilities, but so far these results remain fairly
limited: Human intelligence is often required to supplement au-
tomated tools, and will continue to be needed in the foreseeable
future [1]–[9]. For now, the job of finding vulnerabilities prior
to release is often assigned to software testers who typically aim
to root out all bugs — performance, functionality, and security
— prior to release. Unfortunately, general software testers do
not typically have the training or the expertise necessary to
find all security bugs, and thus many are released into the
wild [10].

Consequently, expert freelancers known as “white-hat hack-
ers” examine released software for vulnerabilities that they
can submit to bug bounty programs, often aiming to develop
sufficient credibility and skills to be contracted directly by
companies for their expertise [11], [12]. Bug bounty programs
offer “bounties” (e.g., money, swag, or recognition) to anyone
who identifies a vulnerability and discloses it to the vendor. By
tapping into the wide population of white-hat hackers, compa-
nies have seen significant benefits to product security, including

higher numbers of vulnerabilities found and improvements in
the expertise of in-house software testers and developers as
they learn from the vulnerabilities reported by others [12]–[17].

This vulnerability-finding ecosystem has important benefits,
but overall it remains fairly ad-hoc, and there is significant
room for improvement. Discovering more vulnerabilities prior
to release would save time, money, and company reputation;
protect product users; and avoid the long, slow process of
patch adoption [18]–[23]. Bug bounty markets, which are
typically dominated by a few highly-active participants [13]–
[16], lack cognitive diversity1, which is specifically important
to thoroughly vet software for security bugs [3], [12]. Bug
bounty programs can also exhibit communication problems
that lead to low signal-to-noise ratios [17]. Evidence suggests
that simply raising bounty prices is not sufficient to address
these issues [25], [26].

To improve this overall ecosystem, therefore, we must better
understand how it works. Several researchers have considered
the economic and security impact of bug bounty programs [16],
[27]–[30]; however, little research has investigated the human
processes of benign vulnerability finding. In this work, we take
a first step toward improving this understanding. We performed
25 semi-structured interviews with software testers and white-
hat hackers (collectively, practitioners), focusing on the process
of finding vulnerabilities in software: why they choose specific
software to study, what tools they use, how they develop the
necessary skills, and how they communicate with other relevant
actors (e.g., developers and peers).

We found that both testers and hackers describe a similar
set of steps for discovering vulnerabilities. Their success in
each step, however, depends on their vulnerability discovery
experience, their knowledge of underlying systems, available
access to the development process, and what motivates them
to search for vulnerabilities.

Of these variables, practitioners report that experience —
which differs greatly between testers and hackers – is most
significant to success in vulnerability finding. Differences
in experience stem primarily from the fact that hackers are
typically exposed to a wider variety of vulnerabilities through
a broad array of sources including employment, hacking

1The way people think and the perspectives and previous experiences they
bring to bear on a problem [24, pg. 40-65].

exercises, communication with peers, and prior vulnerability
reports. On the other hand, we find that testers are typically
exposed to only a narrow set of vulnerabilities through fewer
sources, as testers primarily search for vulnerabilities in only
a single code base, only read bug reports associated with
that program, and only participate in small, internal hacking
exercises, if any.

Access to the development process and motivation also differ
notably between hackers and testers. While participants report
that more experience is always better, their opinions on access
and motivation are less straightforward: more access can help
or hinder vulnerability finding depending on circumstances,
and the relationship between motivation and success can be
highly variable.

From these findings, we distill recommendations to improve
human-driven vulnerability discovery for both populations.

II. RELATED WORK

In this section, we review prior work in four key areas.

A. Bug identification process

Previous work has studied how different populations perform
the task of bug identification. Aranda et al. studied how
developers and testers found 10 performance, security, and
functionality bugs in a production environment [31]. They
reviewed all reporting artifacts associated with the bugs
and interviewed the developers and testers who found and
fixed them. They found that bugs were most commonly
discovered through manual testing; close cooperation and verbal
communication were key to helping developers fix bugs.

Fang et al. surveyed hackers who disclosed vulnerabilities in
the SecurityFocus repository, asking how participants choose
software to investigate, what tools they use, and how they
report their findings [32], [33]. They found that hackers
typically targeted software they were familiar with as users,
predominantly preferred fuzzing tools to static analysis, and
preferred full disclosure. Summers et al. studied problem-
solving mental models through semi-structured interviews of 18
hackers [34]. They find that hackers require a high tolerance for
ambiguity, because they seek to find problems that may or may
not exist in a system they did not design. Additionally, Summers
et al. observed that hackers rely on discourse with others or
visualization techniques (i.e., mapping system semantics on
a white-board) to deal with ambiguity and identify the most
probable issues.

We expand on these prior studies by comparing white-hat
hackers and testers specifically in the domain of security and
including testers and hackers from multiple companies and bug
bounty programs. Also, we thoroughly investigate participants’
processes, communication about vulnerabilities and reporting
strategies, skill-development, and reasons for using specific
tools.

B. Tester and hacker characteristics

Lethbridge et al. discuss the wide breadth of software
testers’ backgrounds, estimating that only 40% possess a

computing-related education and a majority lack formal training
in software engineering practices [35]. They recommend
expanding interactive educational opportunities for testers
to support closing gaps in essential knowledge. Relatedly,
Bertolino et al. examined how testers can harness their domain-
specific knowledge in a distributed fashion to find more bugs
more quickly [36]. We expand on this previous work to provide
the first exploration of how software testers currently learn and
expand their knowledge of vulnerability discovery practices.

Al-Banna et al. focus on external security professionals,
asking both professionals and those who hire them which
indicators they believed were the most important to discern se-
curity expertise [37]. Similarly, Cowley interviewed 10 malware
reverse engineering professionals to understand the necessary
skills and define levels of professional development [38]. We
borrow the concept of task analysis from this work to guide
our interviews while expanding the scope of questions and
comparing hackers to software testers.

Criminology research has also examined why some individu-
als who find vulnerabilities become cyber criminals, finding that
although most hackers work alone, they improve knowledge
and skills in part through mentoring by peers [11], [39], [40].
While we explicitly do not consider black-hat hackers, we build
on these findings with further analysis of how hackers learn
skills and create communities.

C. Measurement of bug bounty programs

Several researchers have investigated what factors (e.g.,
money, probability of success) most influence participation
and productivity in bug bounty programs. Finifter et al. studied
the Firefox and Chrome bug bounty programs [16]. They found
that a variable payment structure based on the criticality of the
vulnerability led to higher participation rates and a greater
diversity of vulnerabilities discovered as more researchers
participated in the program. Maillart et al. studied 35 public
HackerOne bounty programs, finding that hackers tend to focus
on new bounty programs and that a significant portion of
vulnerabilities are found shortly after the program starts [12].
The authors suggest that hackers are motivated to find “low-
hanging fruit” (i.e., easy to discover vulnerabilities) as quickly
as possible, because the expected value of many small payouts
is perceived to be greater than for complex, high-reward
vulnerabilities that might be “scooped” by a competitor.

While these studies suggest potential motivations for hacker
behavior based on observed trends, we directly interview
hackers about their motivations. Additionally, these studies do
not explore the full decision process of bug bounty participants.
This exploration is important because any effective change to
the market needs to consider all the nuances of participant
decisions if it hopes to be successful. Additionally, prior
work does not compare hackers with software testers. This
comparison is necessary, as it suggests ways to best train
and allocate resources to all stakeholders in the software
development lifecycle.

D. Other studies with developers and security professionals

Similarly to our work, many researchers have investigated the
specific needs and practices of developers and other security
experts in order to understand how to improve application
and code security [41]. For example, researchers have focused
on understanding how and why developers write (in)secure
software [42]–[51] and have investigated the usability of
static analysis tools for vulnerability discovery [3], [52]–[60],
network defense and incident response [61]–[69], malware
analysis [70], and corporate security policy development and
adherence [71]–[78]. While these works investigate different
topics and questions than the work presented here, they
highlight the benefits of the approach taken in our research:
studying how experts approach security.

III. METHODOLOGY

To understand the vulnerability discovery processes used by
our target populations, we conducted semi-structured interviews
with software testers and white-hat hackers (henceforth hackers
for simplicity) between April and May 2017. To support
rigorous qualitative results, we conducted interviews until
new themes stopped emerging (25 participants) [79, pg. 113-
115]. Because we interview more than the 12-20 participants
suggested by qualitative research best practices literature, our
work can provide strong direction for future quantitative work
and generalizable design recommendations [80].

Below, we describe our recruitment process, the development
and pre-testing of our interview protocol, our data analysis
procedures, and the limitations of our work. This study was
approved by our university’s Institutional Review Board (IRB).

A. Recruitment

Because software testers and hackers are difficult to re-
cruit [31]–[33], we used three sources to find participants:
software testing and vulnerability discovery organizations,
public bug bounty data, and personal contacts.

Related organizations. To recruit hackers, we contacted the
leadership of two popular bug bounty platforms and several
top-ranked Capture-the-Flag (CTF) teams. We gathered CTF
team contact information when it was made publicly available
on CTFTime.org [82], a website that hosts information about
CTF teams and competitions.

To reach software testers, we contacted the most popular
Meetup [83] groups with "Software Testing" listed in their de-
scription, all the IEEE chapters in our geographical region, and
two popular professional testing organizations: the Association
for Software Testing [84] and the Ministry of Testing [85].

Public bug bounty data. We also collected publicly available
contact information for hackers from bug bounty websites. One
of the most popular bug bounty platforms, HackerOne [86],
maintains profile pages for each of its members which com-
monly include the hacker’s contact information. Additionally,
the Chromium [87] and Firefox [88] public bug trackers provide
the email addresses of anyone who has submitted a bug report.
To identify reporters who successfully submitted vulnerabilities,

we followed the process outlined by Finifter et. al. by searching
for specific security-relevant labels [16].

Personal contacts. We asked colleagues in related industries
to recruit their co-workers. We also used snowball sampling
(asking participants to recruit peers) at the end of the recruit-
ment phase to ensure we had sufficient participation. This
recruitment source accounts for three participants.

Advertisement considerations. We found that hackers were
highly privacy-sensitive, and testers were generally concerned
with protecting their companies’ intellectual property, com-
plicating recruiting. To mitigate this, we carefully designed
our recruiting advertisements and materials to emphasize the
legitimacy of our research institution and to provide reassurance
that participant information would be kept confidential and that
we would not ask for sensitive details.

Participant screening. Due to the specialized nature of the
studied populations, we asked all volunteers to complete a
20-question survey to confirm they had the necessary skills
and experience. The survey assessed participants’ background
in vulnerability discovery (e.g., number of security bugs
discovered, percent of income from vulnerability discovery,
programs they have participated in, types of vulnerabilities
found) and their technical skills (e.g., development experience,
reverse engineering, system administration). It also concluded
with basic demographic questions. We drew these questions
from similar surveys distributed by popular bug bounty plat-
forms [13], [15]. We provide the full set of survey questions
in Appendix A.

We selected participants to represent a broad range of
vulnerability discovery experience, software specializations
(i.e., mobile, web, host), and technical skills. When survey
responses matched in these categories, we selected randomly.
To determine the participants’ software specialization, we asked
them to indicate the percent of vulnerabilities they discovered
in each type of software. We deem the software type with the
highest reported percentage the participant’s speciality. If no
software type exceeded 40% of all vulnerabilities found, we
consider the participant a generalist (i.e., they do not specialize
in any particular software type).

B. Interview protocol

We performed semi-structured, video teleconference2 inter-
views, which took between 40 and 75 minutes. All interviews
were conducted by a single interviewer. Using a semi-structured
protocol, the interviewer focused primarily on the set of
questions given in Appendix B, with the option to ask follow-
ups or skip questions that were already answered [89]. Each
interview was divided along three lines of questioning: general
experience, task analysis, and skill development.

Prior to the main study, we conducted four pilot interviews
(two testers, two hackers) to pre-test the questions and ensure

2Interviews were conducted via video teleconference because it was
geographically infeasible to meet face-to-face.

validity. We iteratively updated our protocol following these
interviews, until we reached the final protocol detailed below.

General experience. We began the interviews by asking
participants to expand on their screening-survey responses
regarding vulnerability discovery experience. Specifically, we
asked their motivation behind doing this type of work (e.g.
altruism, fun, curiosity, money) and why they focus (or do not
focus) on a specific type of vulnerability or software.

Task analysis. Next, we asked participants what steps they
take to find vulnerabilities. Specifically, we focused on the
following sub-tasks of vulnerability discovery:

• Program selection. How do they decide which pieces of
software to investigate?

• Vulnerability search. What steps are taken to search for
vulnerabilities?

• Reporting. How do they report discovered vulnerabilities?
What information do they include in their reports?

To induce in-depth responses, we had participants perform a
hierarchical task analysis focused on these three sub-tasks.
Hierarchical task analysis is a process of systematically
identifying a task’s goals and operations and decomposing
them into sub-goals and sub-operations [90]. Each operation is
defined by its goal, the set of inputs which conditionally activate
it, a set of actions, and the feedback or output that determine
when the operation is complete and which follow-on operations
are required. Hierarchical task analysis was developed to
analyze complex, non-repetitive, cognitively loaded tasks to
identify errors or inefficiencies in the process. We adopted this
for our study, as it provides a useful framework for eliciting
details from experts who typically perform some parts of tasks
automatically and subconsciously [90].

For each sub-operation identified, we also asked participants
to discuss any specific tools they use, what skills are useful
to complete this step, how they learned and developed their
process for completing the necessary actions, and how the
steps they take differ across software and vulnerability types.

Skill development. Finally, we asked participants to describe
how they developed the skills necessary to find vulnerabilities.
Here, we focused on their learning process and how they
interact with other members of their respective communities.

During the task analysis portion of the interview, we asked
participants to explain how they learned how to complete certain
tasks. In this segment, we broadened this line of questioning and
asked what development steps they recommend to newcomers
to the field. This question was intended to elicit additional
learning sources that may have been missed previously and
highlight steps participants believe are the most important.

Finally, we asked each participant to describe their interac-
tions with other members of their local community and the
vulnerability discovery and software tester community at large.
Specifically, we discussed who they interact with, the forms
of their interaction (e.g., one-to-one, large groups), how these
interactions are carried out (e.g., conferences, online forums,
direct messaging), and what types of information are discussed.

C. Data analysis

The interviews were analyzed using iterative open coding [91,
pg. 101-122]. When all the interviews were completed, four
members of the research team transcribed 10 interviews. The
remaining 15 interviews were transcribed by an external
transcription service. The interviewer and another researcher
independently coded each interview, building the codebook
incrementally and re-coding previously coded interviews. This
process was repeated until all interviews were coded. The codes
of the two interviewers were then compared to determine inter-
coder reliability using the ReCal2 software package [92]. We
use Krippendorff’s Alpha (α) to measure inter-coder reliability
as it accounts for chance agreements [93].

The α after coding all the interviews was .68. Krippendorff
recommends using α values between .667 and .80 only in
studies “where tentative conclusions are still acceptable” [94];
and other work has suggested a higher minimum threshold of
.70 for exploratory studies [95]. To achieve more conclusive
results, we recoded the 16 of our 85 codes with an α less
than .70. For each code, the coders discussed a subset of the
disagreements, adjusted code definitions as necessary to clarify
inclusion/exclusion conditions, and re-coded all the interviews
with the updated codebook. After re-coding, the α for the study
was .85. Additionally, all individual codes’ αs were above .70.

Next, we grouped the identified codes into related categories.
In total, there were six categories describing the partici-
pants’ discovery process (i.e., Information Gathering, Program
Understanding, Attack Surface, Exploration, Vulnerability
Recognition, and Reporting) and four categories regarding
factors that influenced participants’ implementation of this
process (i.e., Vulnerability Discovery Experience, Underlying
System Knowledge, Access to the Development Process, and
Motivation). We then performed an axial coding to find
connections between categories and between codes within
categories [91, pg. 123-142]. Based on the categories and
connections between them, we derive a theory describing the
process practitioners use to find vulnerabilities, the factors
that influence their implementation of this process, and how
testers and hackers differ with respect to their process and
implementation.

D. Limitations

Our study has several limitations common to exploratory
qualitative research. A lack of complete recall is especially
prominent in studies like ours, where participants are asked
to describe expert tasks [90]. We employ a hierarchical task
analysis in our interview protocol to improve the thoroughness
of information elicited. Participants may have also adjusted
their answers to portray themselves as more or less skilled,
if they were concerned with the interviewer’s perception of
them [96], [97]. Additionally, there could be selection bias
among the testers and hackers studied. Because we explicitly
stated the purpose of the study when recruiting, it is possible
that those with experience or an interest in security were more
likely to respond to our request. Also, since some hackers
tend to be more privacy sensitive, some may have decided not

to participate in order to protect their identity or intellectual
property. To partially mitigate these issues, we recruited through
a wide variety of sources and interviewed a diverse pool of
participants to increase the likelihood that relevant ideas would
be stated by at least one participant. Finally, for each finding,
we give the number of testers and hackers that expressed a
concept, to indicate prevalence. However, if a participant did
not mention a specific idea, that does not necessarily indicate
disagreement; they may have simply failed to state it. For
these reasons, we do not use statistical hypothesis tests for
comparison among participants. Our results do not necessarily
generalize beyond our sample; however, they suggest many
directions for future work and provide novel insights into the
human factors of software vulnerability discovery.

IV. PARTICIPANTS

We received 49 responses to our screening survey. We
selected 10 testers and 15 hackers. (Themes related to their
vulnerability discovery process converged more quickly with
testers than with hackers, so we required fewer interviews [79]).
Table I shows our participants’ demographics, including their
self-reported vulnerability-discovery skill level (on a scale
from 0-5, with 0 indicating no skill and 5 indicating an expert),
self-reported number of vulnerabilities they have discovered,
company size (only applicable for testers), and the method
used to recruit them.

Hacker demographics match prior surveys. Our study de-
mographics are relatively congruent with hacker demographics
reported in studies from the popular bug bounty services
HackerOne [13] and BugCrowd [98]. 90% of HackerOne’s
70,000 users were younger than 34; 60% of BugCrowd’s 38,000
users are 18-29 and 34% are 30-44 years old. Our hacker
population was 60% under 30 and 90% under 40 years old.
Regarding education, 84% of BugCrowd hackers have attended
college and 21% have a graduate degree; 93% of our hackers
have attended college and 33% have a graduate degree.

Testers are more diverse than hackers. In contrast to our
hacker population, none of our software testers were under 30
and only 60% were under 40 years old. All of our testers have
some college education, but only one has a graduate degree.
With respect to ethnicity and gender, the software tester group
was much more diverse, at 60% male and 60% Caucasian.

Hackers reported higher vulnerability discovery skills. As
expected, there is a contrast in vulnerability finding skills
between testers and hackers. The hacker population self-
reported an average skill level of 3.5, whereas software testers
self-reported an average skill of 2.5. This self-reported measure
cannot be used to directly compare participants’ abilities;
instead, it indicates their self-efficacy, telling us that testers
tend to be less confident in their ability to find security bugs.

Interestingly, despite the hacker population possessing more
vulnerability finding experience, more software testers self-
reported having discovered more than 500 vulnerabilities.
However, we note that the number of vulnerabilities is not

ID1,2 Gender:
Age:Race3 Educ. Skill

Vulns.
Fnd

Org.
Sz Source4

T1W M:30-39:H B.S 1 0-3 >20K O
T2W F:40-49:W B.S. 2 0-3 100 O
T3W F:30-39:W B.S 3 26-50 150 O
T4G M:30-39:A SC 5 >500 200-10K O
T5W M:30-39:W B.S. 4 >500 200 O
T6W M:50-59:A B.S. 3 51-100 60K O
T7G M:30-39:A B.S. 4 >500 50 O
T8H F:50-59:W Assoc. 0 101-500 2K O
T9W F:30-39:W B.S. 0 0-3 2K C

T10W M:40-49:W M.S. 3 0-3 10-50K O

H1H M:18-29:W B.S. 4 11-25 - O
H2H M:30-39:W B.S. 4 51-100 - O
H3G M:30-39:W M.S. 5 >500 - O
H4H F:18-29:W M.S. 4 26-50 - O
H5M M:18-29:W B.S. 4 101-500 - O
H6G M:18-29:H M.S. 3 101-500 - O
H7W M:18-29:W M.S. 3 26-50 - O
H8M M:30-39:W SC 5 101-500 - C
H9G M:18-29:W H.S. 4 26-50 - O
H10H M:18-29:W SC 2 11-25 - O
H11W M:18-29:W B.S. 4 51-100 - O
H12W M:40-49:B B.S. 1 11-25 - O
H13W M:30-39:W B.S. 4 >500 - C
H14W M:30-39:W M.S. 4 101-500 - P
H15W M:18-29:W B.S. 2 26-50 - P

1 IDs are coded by population (T: Tester, H: Hacker) in date order
2 Software Specialization – W: Web, H: Host, M: Mobile, G: General
3 W: White, B: Black, A: Asian, H: Hispanic
4 Recruitment method – O: Related Organization, P: Public Bug Bounty
Data, C: Personal Contact

TABLE I: Participant demographics.

necessarily representative of participant skill. It may instead
depend on their specialization. For example, participants who
focused on web applications reported finding more vulnera-
bilities, but these are generally considered less complex and
therefore are less profitable in bug bounties [99].

V. VULNERABILITY DISCOVERY PROCESS

Perhaps our most surprising result is that hackers and testers
described a similar exploratory process for vulnerability finding.
They first focus on learning what the program does, then
use their intuition and experience to find ways to perform
unintended, malicious actions. Across participants, this process
was generally broken into five phases: Information Gathering,
Program Understanding, Attack Surface, Exploration, Vulnera-
bility Recognition, and Reporting. Participants described the
second (Program Understanding) through fourth (Exploration)
phases as a loop that they iterate until a vulnerability is found.
Figure 1 shows the process our participants described, as well as
the factors that influence the process. In all the category graphs
in this paper, we represent process categories as hexagons,
influencing categories as rectangles, and items that determine
the influencing categories as ovals. Additionally, we represent
relationships between categories with arrows whose direction
indicates the direction of influence. For readability, we color
arrows from influencers to process categories to indicate the
influence category they are derived from.

In this section, we briefly outline the overall vulnerability
discovery process. In the following section, we discuss in detail

Fig. 1: Vulnerability-finding process and influencing factors.

the factors which influence the execution of each phase, and
which exhibit greater differences between our two populations.

Information gathering. In the initial phase of vulnerability
discovery, practitioners quickly collect preliminary information
about the program to develop context prior to reading any
code or executing the program (T=6, H=14). This includes
finding any previous bugs reported in the program (T=3, H=9),
determining the age of the code and update history (i.e.,
looking at change logs to identify old or recently updated
code segments) (T=5, H=9), and identifying the libraries used
(T=1, H=2). This phase’s goal is to develop an understanding
of prior efforts, as well as the technologies the program is built
on. Information Gathering is also used specifically by some
hackers to decide whether to expend additional effort or move
on to a different target (T=0, H=3).

Program understanding. Next, our participants try to de-
termine how the program operates, how it interacts with its
environment (i.e., the user, network, etc.), and how individual
components interact with each other. Initially, this step is
based on communication with developers (T=7, H=0) or on
reading documentation (T=5, H=5), when available. Through
iterations of the loop (i.e., Program Understanding, Attack
Surface, and Exploration), as they execute the program and
read code, practitioners learn about the program by its behavior
(T=6, H=11). T4G described iteratively building up an idea of
the program structure by “touching a little bit everything, and
then you are organizing that structure in your head. . . [and]
you can formalize it [with the code].” H9G tries to get into the
developer’s mindset by rewriting the code himself. He starts
by thinking about the possible “inputs from the management
or business side that [go] into the specification,” then he writes
a version of the program himself and “look[s] for matches
between the machine code I’m seeing [the original program]

and the machine code that my C++ program produces.”

Attack surface. Our participants then identify how a user
can interact with the program (T=9, H=15). Their goal is to
determine what an attacker can manipulate and how they can
influence program execution. This allows our participants to
focus only on critical components of the program. H4H explains
“I look at things that I can touch, [for example] what can I
get to from the network. . . . That’s necessary to narrow down
the target[s].” Our participants discussed looking for direct
program inputs (T=9, H=10), such as website form fields, as
well as indirect inputs (T=4, H=10), such as data pulled from
their social media page or backend communication to a server.

Exploration. Next, practitioners explore the effect of a range
of inputs to see whether it is possible to perform some
malicious action by providing data the program mishandles.
H5M described this as “enumerating all the variable[s] and all
the parameters. . . I can quickly make a bunch of accounts and
see how the user ID changes and how it associates one user
with multiple devices.” Our participants described a range
of approaches to exploring program behavior, typically a
combination of executing the program with a set of test inputs
(T=9, H=11) and code inspection (T=6, H=12).

Of the tools mentioned during our interviews, almost all
were used in this phase. Our participants reported preferring
tools that automate simple, repetitive tasks so that they can
focus on more complicated problems (T=4, H=13). Such tasks
include quickly searching through code or network captures
(T=2, H=10), providing suggestions for test cases (T=5, H=3),
or making code easier to read (e.g., callee-caller method cross-
referencing, variable renaming) (T=1, H=6). We found that
hackers were much more likely to utilize tools to automate this
phase of the process, preferring dynamic analyses (e.g., fuzzing)
(T=5, H=12) over static analyses (e.g., symbolic execution)
(T=0, H=2), which matches Hafiz and Fang’s findings [32].

On the other hand, seven hackers mentioned specifically
focusing on doing things manually, or using tools that aided
them in doing so, because they feel this gives them a
competitive advantage (T=0, H=7). For example, H15W says
he avoids fully automated tools because “I assume that [large
companies] already run static and dynamic analysis tools. . . so
there’s not much of a point of me doing it.”

Vulnerability recognition. Participants iterate through the
prior three phases until they eventually identify a vulnerability.
This phase can be as simple as seeing a crash that produces
a known bad behavior or getting a tool output that indicates
a problem. However, in most cases our participants described
relying on their intuition and system knowledge to recognize
where an assumption is violated or a simple crash shows a
bigger security problem (T=6, H=14).

Reporting. Finally, once the vulnerability is found, it must
be reported. In their reports, our participants focus on making
sure the information is presented in a way that is easily
understandable by developers (T=8, H=11). Specifically, they
stressed communicating the importance of fixing the vulnera-

bility (T=10, H=12). T4G explained that even after you find
a vulnerability, “you have to have the weight of someone
else to agree that [it] is a bug. . . you do have to [convince]
someone that there’s a risk. . . It’s quite timely [time consuming],
running a ticket.” This emphasis on selling the importance of the
vulnerability mirrors the findings of Haney and Lutters [100].

Exception to the process. Four hackers in our study reported
a notable exception to the order of phases described above.
These hackers stated that they, in some cases, first recognize a
vulnerability and reverse the normal process by looking for an
execution path to the insecure code (T=0, H=4). This occurs
whenever they find known insecure code (e.g., memcpy or
printf in a C program) using a string search or other simple
static analysis. Then they trace the execution path back through
the code manually to find any input that triggers the vulnerable
code. While this is a different order of operations, the general
phases of the process remain the same.

VI. INFLUENCING FACTORS

While all our participants described a similar process, their
implementation of this process differed. These differences can
be loosely grouped into four influencing factors: Vulnerability
Discovery Experience, Underlying System Knowledge, Access
to the Development Process, and Motivation. We found that
both groups of practitioners expect increases in Vulnerability
Discovery Experience and Underlying System Knowledge to
improve vulnerability discovery success. Further, we found
that hackers and testers reported similar levels of underlying
system knowledge, yet the most important difference between
our hackers and testers was in their vulnerability discovery
experience. To our surprise, we did not find a straightforward
relationship between increased access to the development
process and successful vulnerability finding. Finally, the impact
of different motivational influencing factors was likewise more
complex than expected.

A. Vulnerability discovery experience

Overall, hackers and testers agreed that prior experience
finding vulnerabilities significantly improves their vulnerability
discovery process (T=10, H=13); the key difference is that
hackers reported notably more experience than testers.

In particular, we find that regardless of role, experience
improves a practitioner’s ability to efficiently identify the attack
surface, select test cases, recognize vulnerabilities, and sell the
resulting report. Both groups reported that the best approaches
to gaining the relevant experience are real-world code analysis,
hacking exercises, learning from their community, and prior
bug reports. However, hackers were more likely than testers to
rely on hacking exercises and bug reports. Further, hackers are
exposed to a wider variety of vulnerabilities across all these
learning approaches. Figure 2 shows the effect of vulnerability
discovery experience on phases of the process and the ways
practitioners develop experience.

Fig. 2: Vulnerability Discovery Experience Category Graph.

1) How does experience affect the process? Across both
groups of practitioners, participants identified several key ways
that experience adds to vulnerability discovery success.

Helps recognize a problem quickly. Our participants fre-
quently mentioned learning to recognize patterns that indicate
a problem based on prior experience (T=6, H=14). For example,
as he explores a program for possible bugs, H10H stated that
he has a set of potential problems that he knows could occur
based on prior experience. He said “I know that if there’s a loop
[that’s] going through my input, it could be going out of bounds
on the array, could be underflow, overflow.” Relatedly, most
participants discussed maintaining a mental or physical list of
all the vulnerabilities they have seen through past experience
and checking for these whenever they test a new piece of
software (T=9, H=11).

Informs test case selection. In complex real-world systems,
it is impractical to perform a complete search of all possible
program inputs, so our participants stated that they rely on their
intuition, learned from prior experience, to triage (T=9, H=8).
For example, T3W discussed creating a list of standard test
cases “based on things we’ve found from Rapid7 [web security
scanning tool]” or after asking “one of the developers. . . if
there is other security testing we should be doing.” From her
experience, she “broadened the scope of security testing at
the time [was just SQL injection], and brought in cross-site
scripting.” H2H explained how he built a set of file formats
that he tries to open “in some random image parser, and half
the time it would [cause a crash].” He said that he created
his list based on his experience working with other security
professionals in an “apprentice”-like situation where “You
watch them, they watch you, and soon you’re doing it on your
own.”

Helps identify the attack surface. We observed that only
participants with more experience mentioned indirect inputs
as part of the attack surface (T=4, H=10). Indirect inputs
are more difficult to identify because they require a complex
combination of events that may not occur frequently. Typically,
our practitioners suggested that they only know to look for
these complex interactions because they have seen something
similar previously. T3W discussed learning about indirect inputs

after incidentally finding a vulnerability in the way a program
accepted user input from a LinkedIn third-party login service,
“as soon as I found the LinkedIn problem, I made sure to test
[FB and Twitter] to make sure [they were processed correctly].
And if we did allow login with another 3rd party in the future,
I would check that too.”

Helps describe a vulnerability’s impact. Testers and hackers
leverage prior experience to explain how a vulnerability could
be used by a malicious actor when arguing its impact to
developers. T10W recalled a time where he used the story
of a denial of service attack, caused by the same type of
vulnerability, to explain the importance of fixing a new problem
quickly.

Without experience, slower and more random. Without
prior experience guiding triage, our practitioners relied on
stumbling across vulnerabilities incidentally (T=5, H=4); or on
their curiosity (T=8, H=5), personal creativity (T=3, H=6), and
persistence (T=2, H=9) with ample time (T=4, H=9) to dig
through the complexity of a program. Such incidental discovery
is time consuming and haphazard, with little consistency in
results. H1H described looking for a vulnerability in a complex
program and “spent the whole summer on it and failed”, but
after reviewing bug reports for similar programs, he returned
to searching the same program and found a vulnerability after
“about a month”. Thus, prior experience provides a useful and,
in the opinion of some of our hackers, critical stimulus to the
bug finding process (T=0, H=4).

2) How is experience developed? Our participants developed
experience through hands-on practice, supplemented by support
from their peers and by reading other practitioners’ vulnerability
reports. Most notably, hackers reported a greater variety of
learning methods, and more diverse experiences within each
method, than testers; as a result, hackers developed more, and
more valuable, experience.

Gained by searching real-world programs. All of our testers
mentioned gaining experience through their job, supporting
findings from Lethbridge et al [35]. Six reported gaining
vulnerability-discovery experience by incidentally finding secu-
rity vulnerabilities while seeking out functionality bugs. Four
reported learning something from their company’s security-
training best practices, but also reported that these best practice
guides provide, at best, limited information.

The hackers in our study also develop hands-on experience
through employment, which tended to be in security-specific
roles such as full-time bug bounty participation and contracted
penetration testing (H=13). As might be expected, this security-
focused experience provides a strong advantage. Additionally,
the ad-hoc and frequently changing nature of hackers’ em-
ployment exposes them to a wider variety of programs, and
therefore types of vulnerabilities, compared to testers who
focus only on a single program or a few programs developed
by their company and change focus less frequently.

In addition to their full-time jobs, we found that many of
our hackers and some testers performed vulnerability discovery

on real-world programs as a hobby (T=3, H=11). These
participants explained that they searched for vulnerabilities,
though there was no expected economic benefit, for the purpose
of hands-on learning and personal enjoyment.

Gained through hacking exercises. Many of our hackers
and some of our testers participate in hacking exercises like
capture-the-flag competitions or online war games [101], [102]
(T=4, H=13). These exercises expose players to a variety of
vulnerabilities in a controlled, security-specific setting with
little program functionality aside from vulnerable components.
H3G explained that hacking exercises help players focus
on important details without becoming “overloaded"; these
exercises also offer a “way of measuring the progress of your
skills." Notably, the four testers had participated in only a few
narrowly-focused workplace competitions, while our hackers
mentioned many broad-ranging exercises.

Learned from their community. Both hackers and testers
reported similar experiences learning through colleagues, both
within and external to their workplace. Participants mention
learning from co-workers (T=7, H=7); from hobbyist (T=7,
H=10) and professional (T=2, H=0) organizations in which
they are a member; and from informal personal contacts (T=6,
H=12). Within these communities, practitioners are taught by
those with more experience (T=10, H=13) and learn by working
through and discussing difficult problems with their peers (T=6,
H=9). For example, T5W described “Just watching other people
test, grabbing what one person uses and then another and
adding it to your own handbook.” H2H explained that starting
his career at a security company with “a lot of institutional
knowledge” was critical to his development because he had
“a lot of folks that I was able to pick their brain.” Whenever
personal contacts are not sufficient, practitioners also seek out
information published online, typically in the form of expert
blog articles and web forum posts (T=6, H=10).

Learned from prior vulnerability reports. Additionally,
many participants—but particularly hackers—regularly read
other individuals’ vulnerability reports or discussed vulnera-
bilities found by colleagues to learn about new vulnerability
types and discovery techniques, essentially gaining practical
experience vicariously (T=6, H=15). H1H described using bug
reports to test his vulnerability finding skills. Before reading a
report, he asks himself, “Can I see the bug?” in the vulnerable
version of the program. If the answer is no, he looks at the
report to see “what the issue was and what the fix was and then
where in the source the bug was.” However, testers commonly
only look at internal reports (T=5, H=0), whereas hackers view
reports from a variety of programs (T=1, H=15), exposing
them to a wider range of experiences.

Rarely learned through formal education. Finally, some
participants mentioned more formal training such as books
(T=1, H=7), academic courses (T=2, H=6), and certifications
(T=0, H=1). In all cases, however, these methods were
perceived to only support attaining the skills to participate
in hands-on methods, not to be sufficient on their own.

Fig. 3: Underlying System Knowledge Category Graph.

B. Underlying system knowledge

Almost all participants in both populations (T=8, H=15) em-
phasized the importance of underlying system knowledge (e.g.,
operating systems, programming languages, network protocols,
and software libraries) for successful vulnerability discovery.
Unlike with vulnerability discovery experience, our hackers and
testers expressed similar levels of system knowledge. Instead,
the biggest variation is in which underlying systems participants
understand, primarily due to software specialization. Many
participants reported focusing on a particular type of software
(e.g., web, mobile, host) out of necessity, such as limited time
to maintain proficiency in all software types (T=5, H=11).
We found that practitioners in both populations limit their
vulnerability searches based on their specialty (e.g., mobile
specialists only consider a mobile app and not its associated
web server).

Both populations indicated that system knowledge plays a
role in the Attack Surface phase; hackers were more likely to
report that it also plays a role in the Vulnerability Recognition
phase (See Figure 3.)

1) How does system knowledge affect the process? Under-
standing the underlying system components allows practitioners
to recognize vulnerabilities caused by discrepancies between
the developer’s assumptions about how the system behaves and
what actually occurs (T=2, H=6). H14W described how his
understanding of Mozilla web add-ons helps him recognize
vulnerabilities in other developers’ code, saying that add-on
developers “have no idea what they are doing there, and I see
they do horrible stuff.”

Strong system knowledge helps practitioners identify more
input vectors into a program, as well as the full range of
potential inputs (T=5, H=12). H1H gave an example of better
system understanding improving his view of the attack surface:
“I took [Operating Systems] where I was writing a kernel,
and that was incredibly important. It wasn’t until I took
this that I really understood what the attack surfaces really
were. . . The idea of being the [Virtual Machine] host where
you’re communicating with the GPU via some channel, I
wouldn’t have thought about that layer if I hadn’t written
a kernel.”

Fig. 4: Access to development process category graph.

2) How is system knowledge developed? The development
of system knowledge closely parallels the development of
vulnerability discovery experience, with participants relying on
hands-on experience and the community. Participants indicated
learning through a mixture of on-the-job learning as a tester
or hacker (T=10, H=13) and experience as a developer (T=6,
H=11) or systems administrator (T=0, H=3). H5M discussed
the impact of his prior employment; “I worked at an antivirus
company and you had to look at a lot of samples really
quick. . . and [now] it’s easy to say ‘Ok, here’s where they’re
doing this’. . . and just quickly looking at it.”

Participants also mentioned using community (T=7, H=7)
and online resources (i.e., expert blogs and web forums) (T=7,
H=8) to supplement their experiential learning. Participants
also learn from standards documents such as network protocol
RFCs and assembly language instruction set documentation
(T=2, H=4). Again, very few mentioned formal education (T=2,
H=2), and of those who did, none considered it necessary. H6G
explained that he has read some good books and has a computer
science degree, but finds hands-on learning the best because
“For me I need ten hours reading a book. It’s the same as 2
[or] 3 hours trying to solve a challenge.”

C. Access to development process

Another factor that influences the vulnerability discovery
process is whether a practitioner has access to the development
process. Figure 4 shows the effect of this access on the
phases of vulnerability discovery. Clearly, because testers serve
in an internal role, they have greater access to the source
code, program requirements, and the developers themselves;
they are also commonly involved in program-design decisions
(T=7, H=0). All of our hackers, conversely, are (intentionally)
outsiders (H=15) approaching the program as a black box with
access at most to the source code if it is an open-source project
or unobfuscated client-side script. Our participants report that
both perspectives have key advantages and disadvantages: as
outsiders by design, hackers are not biased by the assumptions
of the developers, but testers have potentially valuable inside
knowledge as well as an advantage in communicating findings
to developers.

Internal efforts rely on documentation and direct developer

communication. When gathering information, most testers rely
on internal code tracking databases and communication with
developers and other testers to determine the results of prior
vulnerability discovery efforts (T=9, H=0). When trying to
understand the program, because testers are involved in the
program’s design, they get into the mindset of developers by
talking to them (T=8, H=0). T6W described participating with
developers and other stakeholders in “a design session. That’s
where we are going to put down the requirements.” This session
includes discussions about how to build the system and “what
kind of testing we are going to [do].”

Having internal access to the development process can reveal
flawed assumptions that would never be found by an outsider.
However, knowing too much about the program going into
the vulnerability search can blind the investigator to certain
issues. T4G explains this, saying, “I try to learn as much about
it without knowing too much about it. . . . It’s hard to ignore
certain details once you know about certain areas already.”
However, T4G still recognized the value of communicating
with his developers, saying, “You can give feedback to your
teammates, your developers, your product owners. . . . You’re
coming back with information, and then they react on it. Then
you have to go back there [to explore] again.”

External efforts use black-box testing and reverse engi-
neering techniques. Because hackers do not have access to
internal resources, they have to use more complicated methods
to directly interrogate the system. When initially gathering
information about a program, hackers use network-scanning
tools and other black-box enumeration techniques to determine
how the program is built and what underlying technologies
it uses (T=0, H=5). During the program understanding phase,
hackers rely only on their ability to reverse engineer the
developer’s intentions by reading and executing the code in
lieu of talking to developers (T=0, H=15). H9G builds a clear
picture of how the developer is thinking and what they are
trying to do by looking directly at their code, because “when
you look at the binary. . . you get a more intimate look into
how the programmer was thinking.” He reads the code to “see
certain implementations and certain patterns in the code. . . that
can potentially allow you to make an assumption about a part
of the specification.”

Building rapport with developers. In contrast to the mixed
effect on the vulnerability search, our participants indicated
that having greater access to the development process provides
an advantage when reporting the vulnerability. Our testers
discussed using this connection to develop a shared language
about the program (T=8, H=0) and build a relationship where
they can go to the developers directly to discuss the issue and
mitigate the problem (T=9, H=0). T1W stated that he tries
“to use the same verbiage, so if for example I’m testing an
application and I’m referencing certain parts, . . . [I’ll] see how
they name those specific fields. . . and I’ll try to use the terms
they’re using versus regular colloquial terms.” He explained
that the shared language and relationship allows him to avoid
misunderstandings that could slow or even stop the remediation

process.
Our hackers rarely have the same rapport because, as external

participants, they communicate with developers only when they
find a vulnerability, which may only occur once per program.
In a few cases, our hackers were able to develop a strong
relationship with a particular company (H=2), but this only
occurred after they submitted multiple reports to that company.
H8M focuses on a very specific program type, mobile device
firmware, and therefore has developed a relationship with most
of the major companies in this area. He described adjusting
the information he reports depending on previous interactions.
For less security-proficient companies he needs “to go into
full details, as well as sending a fully compiled, weaponized
exploit,” but for companies he has a better relationship with,
he just says “In this application in this class, you don’t handle
this right,” and they can identify and fix the issue quickly. This
avoids wasting his time creating a lengthy report or developers’
time reading it.

Hackers make up for lack of access with proofs-of-concept.
Because most hackers have minimal communication with
developers, they stressed the necessity of proving the existence
and importance of the vulnerability with a proof-of-concept
exploit to avoid spending significant amounts of time explaining
the problem. H3G explained that “including the proof-of-
concept takes more time to develop, but it saves a lot of
time and communication with the [developers], because you
show that you can do an arbitrary [code execution]. . . and that
this theoretical vulnerability cannot be mitigated.” While this
approach is straightforward, developing an exploit can be the
most time-consuming part of the process (H=2), and developers
may not accept a report even in the face of evidence (T=7, H=9)
or appropriately fix the code because they do not understand
the root of the problem (T=7, H=9). H15W gave an example
of a time when he was reviewing a bug report and found that
“they didn’t fix it properly. [It was] still exploitable in other
ways.” Testers overcome these challenges by spending time in
discussion with the developers to clear up misunderstandings,
but hackers typically do not have these necessary relationships
and access to developers.

D. Motivation

The final influencing factor on the discovery process is a
practitioner’s motivation for looking for vulnerabilities. Figure 5
illustrates how motivations affect the discovery process. Most of
our participants select which programs to search and what parts
of the code to look at based on a calculation of likelihood to
find vulnerabilities versus the value of the vulnerabilities found
(T=10, H=11). The four hackers who did not describe this
likelihood versus value calculation still consider likelihood as a
factor (T=10, H=15), but either are paid a fixed rate as part of
an internal security team or contracted review or are motivated
by some non-monetary benefit (see Section VI-D). Overall, our
hackers and testers estimate vulnerability likelihood similarly,
but differ significantly when determining value. Additionally,

Fig. 5: Motivation category graph.

we found that all participants were motivated to report clearly,
no matter their likelihood vs. value calculation.

Estimating likelihood. Because most modern code bases are
very large, both populations expressed the need to triage which
program components to search based on the likelihood of
finding a vulnerability. Both populations described several
similar heuristics for this. First, practitioners focus on code
segments that they expect were not heavily tested previously
(T=5, H=11). H7W, for example, considers where developers
are “not paying attention to it [security] as much.”

Next, testers and hackers look at parts of the code where
multiple bugs were previously reported (T=3, H=9). As T2W
said, “There were issues with those areas anyway. . . so I figured
that that was probably where there was most likely to be
security issues. . . bugs cluster.”

Both populations mentioned situations when code is new
(e.g., rushed to release to fix a major feature issue) (T=5,
H=5), or when they do not think the developers understand the
underlying systems they are using (e.g., they noticed an odd
implementation of a standard feature) (T=1, H=3). Additionally,
some hackers also looked at old code (e.g., developed prior to
the company performing stringent security checks) (T=0, H=7)
and features that are rarely used (T=0, H=3).

Testers determine value by impact to company. As we
would expect, testers determine value by estimating the negative
effect to the company if exploited (T=8, H=3) or if the program
fails a mandated audit (e.g., HIPAA, FERPA) (T=4, H=0).
Because of this motivation, they tend to focus on features that
are most commonly used by their user base (T=2) and areas of
the code that handle sensitive data (e.g., passwords, financial
data) (T=8). T5W said he considers “usage of the site, [that
is] how many people are going to be on a certain page or
certain area of the site, [and] what’s on the page itself, [such
as] forms” to determine where a successful attack would have
the most impact.

Hackers maximize expected payout using several strategies.
Previous research has shown that hackers are more likely to
participate in a program whenever the bounties are higher [17],
and bounty prices increase with vulnerability severity [16]. We
also observed that hackers cite the size of the bounty payout
as their key motivator; however, we found that hackers follow
one of two strategies when deciding how to best maximize
their collective payouts.

The first strategy seeks out programs where the hacker has
a competitive advantage based on specialized knowledge or
experience that makes it unlikely that others will find other
similar vulnerabilities (H=9). Hackers following this strategy
participate in bug bounties even if they are unlikely to receive
immediate payouts, because they can gain experience that will
help them later find higher-payout vulnerabilities. H1H said
that he focuses on more complex problems even though “I had
no success for the first year, I knew that the barrier to entry
was so high, that once I got good enough, then it would work
out consistently that I could find bugs and get rewards. . . once
you get good at it there’s less competition.”

The other payout maximizing strategy we observed is to
primarily look for simple vulnerabilities in programs that have
only recently started a bug bounty program (H=8). In this
strategy, hackers race to find as many low-payout vulnerabilities
as possible as soon as a program is made public. Hackers
dedicate little time to each program to avoid the risk of report
collisions and switch to new projects quickly. H12W said that
he switches projects frequently, just looking for “low-hanging
fruit,” because “somebody else could get there before you,
while you are still hitting your head on the wall on this old
client.” This aligns with the phenomenon observed by Maillart
et al., where hackers switch quickly to new bug bounties
because they are more likely to have more vulnerabilities [12].
We found that hackers typically consider this approach when
searching for web vulnerabilities, which have a “lower barrier
to entry” than finding vulnerabilities in host software for which
“the process to become proficient is higher [harder]” (H1H).

Additionally, some hackers completely avoid any company
they have previously had poor relations with, either because
they do not think it is likely they will be compensated fairly
for their efforts or because the payment is not worth the
administrative struggle (T=0, H=6). H9G described submitting
a remote-code-execution vulnerability, but never receiving a
response, when it should have garnered a large bounty based
on the company’s published policy. He said that “When we
encounter that hostile behavior, that’s pretty much an instant
turn-off” from working with that company again.

Some participants also consider non-monetary value.
Specifically, participants cited motivations including altruism
(i.e., bounty paid to charity or improved security for the greater
good) (T=2, H=7), enjoyment (T=1, H=11), peer pressure (T=0,
H=1), and personal protection (i.e., fix security bugs in products
they use to avoid personal exploitation) (T=0, H=2). However,
these factors are commonly secondary to monetary value.

All practitioners are motivated to report well. Practitioners’
motivations also influence how they communicate with devel-
opers when reporting. Both populations expressed the need
to make developers aware of the importance of fixing these
bugs (T=10, H=12). Testers are only able to prevent harm
to the company if developers accept and adequately fix the
vulnerabilities they report. Hackers, motivated by a bug bounty
payout, receive their payment only when the company accepts
their report and are only paid at the level they expect if the

developers agree with their assessment of severity. Participants
defined importance as a function of the business impact on
the company (T=8, H=3), how much control the vulnerability
gives the attacker (e.g., limited data leakage vs. arbitrary code
execution) (T=3, H=6), and how easily an attacker can exploit
the vulnerability (T=2, H=6). T10W said ,“You need to be
able to express not only what the problem is and where the
problem lies, but also how this could be used to do X amount of
damage.” Additionally, some hackers discussed spending time
after finding a vulnerability to understand the full implications
of the issue (T=0, H=4). H9G said “When I find an issue, I
don’t necessarily rush to the developer. . . I could probably chain
the vulnerability to other vulnerabilities to be more impactful
and more impressive. . . [and] I get paid more, which is certainly
a factor.”

Our practitioners also emphasized the need to make their
reports easy for developers to understand by considering the
technical and security background of their audience (T=7,
H=11). As T2W stated, when “there’s not enough experience
with security across the [development] team, I tend to give
them more information to make it easier.” Some practitioners
also use phrasing and wording that are easy to read (T=4, H=5).
T1W said he checks to see if “I missed anything grammar-
wise. . . does it have proper flow?” If he thinks it might be hard
to read, he “pull[s] another tester and say[s], ‘Hey, does this
make sense?’ ” In some cases, practitioners use a fixed format
(T=6, H=3) so that developers know where to look for specific
information based on previous reports or by looking at the
headings. Finally, many participants discussed maintaining an
open-minded, respectful tone when discussing the vulnerability
to avoid triggering a defensive response (T=8, H=5). T2W
stressed the importance of respectful tone, saying, “Probably the
biggest thing is keeping it factual and neutral. Some developers
take any [report] as an attack on their ability to code.”

VII. DISCUSSION AND RECOMMENDATIONS

Our key findings can be summarized as follows:

• The two factors most critical to vulnerability discover suc-
cess are vulnerability discovery experience and underlying
system knowledge.

• Both hackers and testers typically develop sufficient sys-
tem knowledge through their employment and interactions
with their community.

• Although hackers and testers develop vulnerability dis-
covery experience through similar means, hackers are
exposed to a wider variety of programs and vulnerabilities
through the different types of employments, exercises, and
communities they are involved in and the more diverse
bug reports they read. This provides hackers an important
advantage over testers.

• Access to the development process is a mixed blessing.
Access facilitates reporting for testers by building rapport
and shared language, but “outsider by design” status allows
hackers to recognize mistaken assumptions.

• Hackers attempting to maximize value typically pursue
one of two strategies: identify “low-hanging fruit” quickly
or develop a deep knowledge advantage.

With these findings in mind, we suggest recommendations for
organizations and individuals involved in software vulnerability
discovery and directions for future work.

A. Training in the workplace

Our results suggest that extending testers’ vulnerability
discovery experience will improve their efficacy at finding
vulnerabilities before release. We suggest two approaches for
use within testers’ existing work context; we also recommend
future work to explore how to expand that context.

Security champions. Many of our testers described learning
from more experienced testers (T=8). As a first change, we
recommend hiring a small number (one or two) hackers to
work alongside testers, highlighting potential vulnerabilities and
sharing security-testing techniques. Deliberately introducing
hackers to the team should cultivate learning opportunities.
T8H discussed the success of this approach in her organization,
saying, “I had two gentlemen. . . who were really into security
testing. . . . They eventually went on to create a whole new
security team. . . . Most of my security testing is all from
what I’ve learned from them.” T8H emphasized that this
effort, which began with two testers experienced in security
pointing out problems to their less experienced co-workers, led
within three years to development of a company-wide security
consciousness. Further, she said that external security reviews
of their product now find many fewer vulnerabilities than they
did prior to introducing security champions.

Bug-report-based exercises. Many of our testers spend time
discussing interesting bugs found by their peers in regular
training sessions (T=7). However, simply discussing a vulner-
ability does not allow the hands-on practice our participants
considered necessary. Instead, we suggest hands-on training
based on vulnerabilities previously found in the company’s
code, either via formal exercises or simply by asking testers
to search the pre-fix code and try to find the vulnerability (as
suggested by H1H in Section VI-A2. Such exercises will allow
testers not only to learn about different vulnerabilities, but also
to gain practical experience looking for them.

Future work to increase variety of experiences. The afore-
mentioned approaches, however, will still only expose testers
to a limited range of vulnerabilities within the program(s) on
which they work. Further research is required to determine
the best way to provide broader exposure to testers. Many
of our testers participate in internal hacking exercises (T=6),
but it was not clear why they do not participate in external
exercises. Prior research has found that these exercises typically
require a significant time commitment and prior knowledge,
which we hypothesize are not a good fit for testers [103], [104].
One possible solution is to create tailored CTFs with hints
that slowly introduce new concepts, as some CTFs currently
do [105]. This approach is referred to as “scaffolding” in

education literature and provides students the necessary support
to allow learning and avoid despair [106].

Similarly, many testers cited internal bug reports as a learning
source (T=6), but they do not spend time reading external
reports like hackers do (T=1, H=13). One possible reason
could be that it is difficult to find vulnerability reports without
knowing the correct online resources to consult. Currently bug
reports are dispersed among corporate vulnerability disclosure
sites [81], [86], [107], personal GitHub repos [108], community
mailing lists [109], and public vulnerability databases [110],
[111]. Creating a single aggregated repository or searchable
source for bug reports and discovery tutorials, and pointing
testers to it, could expose testers to a wider range of informa-
tion.

Further work should evaluate these techniques and develop
others to encourage testers to expand the variety of their
vulnerability discovery experience.

B. Hacker-developer relationships

While improving testers’ vulnerability-finding skills could
meaningfully improve security, companies will likely still
need security experts to find the most complex problems.
Unfortunately, many of our hackers described difficulties
communicating with developers, resulting in their findings
either not being accepted or not being fixed properly (T=9).
To solve this challenge, we look to learn from the strengths of
our testers.

Establish consistent relationships early. We found that testers
have an advantage in the reporting phase because they have built
a relationship with developers through their inherent access to
the development process. Additionally, the two hackers who
mentioned cultivating a close relationship with a particular
company described similar benefits. We therefore recommend
companies make efforts to build relationships with hackers as
early as possible.

First, we recommend that organizations maintain a consistent
point of contact with hackers, so that any time a hacker reports
a vulnerability, they communicate with the same person and
build a shared language, understanding, and trust. Obviously,
a single point of contact is not always useful because a hacker
may only report one vulnerability. In these cases, it is important
for companies to be as open as possible when providing
requirements and expectations to the hacker. Some potential
improvements might be to provide more detailed templates and
examples of effective reporting, to give feedback or ratings
on (specific sections of) reports and how they did or didn’t
help developers, and answer hacker questions throughout the
process to avoid confusion.

Further, our results support industry-wide standardization of
vulnerability reporting procedures. This includes agreeing on
report templates, “good” reporting examples, and vulnerability
definitions. Standardizing expectations and vocabulary should
provide consistency across programs and reduce the burden to
build individual relationships with each company.

Hackers as security advocates. Additionally, further work

is needed to understand how hackers can best convey the
importance of a vulnerability, given limited communication
channels and time to influence developer decisions. Future
research should therefore focus on improving hacker reporting
through improved resources and training. For example, a
centralized repository of real-world cases where an attacker
has exploited a vulnerability that hackers can use as examples
could help with demonstrating a vulnerability’s importance.
Relatedly, Haney and Lutter suggest providing hackers with
formal training in how to best advocate for cybersecurity within
complex organizational and structural environments [100].

C. Tailor compensation to motivation

Assuming we can improve testers’ vulnerability discovery
skills so they can find a greater number of relatively simple
vulnerabilities, bug bounty policies should be adjusted to focus
hacker searches on more challenging vulnerabilities. Based on
our results, we suggest two possible bug bounty policy changes
below. Further research is necessary to evaluate the efficacy of
these changes in real-world settings.

Adjust payout structure as security posture matures. Ini-
tially, a company could offer high payouts for all vulnerabilities,
attracting hackers via a high likelihood-to-value ratio. This
higher participation will likely generate a large number of bug
reports that testers can learn from. As the company grows
more security-mature internally, it may be possible to reduce
payouts for low-level vulnerabilities and shift these funds to
pay for more complex vulnerabilities. Further, they may wish
to reward hacker specialization by offering bonuses for finding
multiple vulnerabilities.

Use non-monetary motivators. In addition to increasing
monetary funding, companies can also take advantage of non-
monetary motivators to increase the overall payout without com-
mitting additional dollars. Most bounties already take advantage
of recognition and fun through the use of leaderboards or “walls
of fame” as well as the innate enjoyment our participants report
deriving from finding a vulnerability. However, companies
should also consider the negative effects of their actions during
the reporting process, such as delaying or not publishing a
report due to company politics (T=0, H=2) or dismissing the
report without providing sufficient feedback (T=7, H=9). These
actions depress the recognition and enjoyment value for the
hacker. Companies can take advantage of hackers’ altruistic
tendencies by indicating the impact an exploited vulnerability
could have on the affected user base in the project’s description.
Finally, companies could attract hackers seeking personal
growth by highlighting skills that could be developed while
looking for vulnerabilities and offering online resources to
support learning.

ACKNOWLEDGMENTS

We thank Michael Hicks and the anonymous reviewers for
their helpful feedback; the two major bug bounty platform
companies and the many CTF teams and testing groups that
supported our recruitment efforts; and Cynthia Wu and the DC

Agile Software Testing Group for providing valuable insights
into the world of software testing.

REFERENCES

[1] Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang,
C. Kruegel, and G. Vigna, “Rise of the hacrs: Augmenting autonomous
cyber reasoning systems with human assistance,” in Proc. of the 24th
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17. ACM, 2017.

[2] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug
finding tools for java,” in Proc. of the 15th International Symposium
on Software Reliability Engineering, ser. ISSRE ’04. IEEE Computer
Society, 2004, pp. 245–256.

[3] D. Baca, B. Carlsson, K. Petersen, and L. Lundberg, “Improving
software security with static automated code analysis in an industry
setting.” Software: Practice and Experience, vol. 43, no. 3, pp. 259–279,
2013.

[4] A. Doupé, M. Cova, and G. Vigna, “Why johnny can’t pentest: An
analysis of black-box web vulnerability scanners,” in Proc. of the 7th
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, ser. DIMVA’10. Springer-Verlag, 2010, pp.
111–131.

[5] A. Austin and L. Williams, “One technique is not enough: A comparison
of vulnerability discovery techniques,” in Proc. of the Fifth International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’11. IEEE Computer Society, 2011, pp. 97–106.

[6] N. Antunes and M. Vieira, “Comparing the effectiveness of penetration
testing and static code analysis on the detection of sql injection
vulnerabilities in web services,” in Proc. of the 2009 15th IEEE Pacific
Rim International Symposium on Dependable Computing, ser. PRDC
’09. IEEE Computer Society, 2009, pp. 301–306.

[7] L. Suto, “Analyzing the effectiveness and coverage of web application
security scanners,” BeyondTrust, Inc, Tech. Rep., 2007. [Online]. Avail-
able: https://www.beyondtrust.com/resources/white-paper/analyzing-the-
effectiveness-and-coverage-of-web-application-security-scanners/

[8] L. Suto, “Analyzing the accuracy and time costs of web application
security scanners,” BeyondTrust, Inc, Tech. Rep., 2010. [Online]. Avail-
able: https://www.beyondtrust.com/wp-content/uploads/Analyzing-the-
Accuracy-and-Time-Costs-of-Web-Application-Security-Scanners.pdf

[9] G. McGraw and J. Steven, “Software [in]security: Comparing apples,
oranges, and aardvarks (or, all static analysis tools are not created
equal,” Cigital, 2011, (Accessed 02-26-2017). [Online]. Available:
http://www.informit.com/articles/article.aspx?p=1680863

[10] A. Edmundson, B. Holtkamp, E. Rivera, M. Finifter, A. Mettler, and
D. Wagner, “An empirical study on the effectiveness of security code
review,” in Proc. of the 5th International Conference on Engineering
Secure Software and Systems, ser. ESSoS’13. Springer-Verlag, 2013,
pp. 197–212.

[11] Z. Xu, Q. Hu, and C. Zhang, “Why computer talents become computer
hackers,” Communications of the ACM, vol. 56, no. 4, pp. 64–74, Apr.
2013.

[12] T. Maillart, M. Zhao, J. Grossklags, and J. Chuang, “Given enough
eyeballs, all bugs are shallow? revisiting eric raymond with bug
bounty programs,” in Proc. of the 15th Workshop on the Economics of
Information Security, ser. WEIS ’16, 2016.

[13] Hackerone, “2016 bug bounty hacker report,” Hackerone, Tech. Rep.,
September 2016. [Online]. Available: https://hackerone.com/blog/bug-
bounty-hacker-report-2016

[14] A. Mein and C. Evans, “Dosh4vulns: Google’s vulnerability
reward programs,” Google, 2011, (Accessed 02-26-2017). [Online].
Available: https://software-security.sans.org/downloads/appsec-2011-
files/vrp-presentation.pdf

[15] Bugcrowd, “The state of bug bounty,” Bugcrowd, Tech. Rep., June
2016. [Online]. Available: https://pages.bugcrowd.com/2016-state-of-
bug-bounty-report

[16] M. Finifter, D. Akhawe, and D. Wagner, “An empirical study of
vulnerability rewards programs,” in Proc. of the 22nd USENIX Security
Symposium, ser. USENIX Security ’13, 2013, pp. 273–288.

[17] M. Zhao, J. Grossklags, and P. Liu, “An empirical study of web
vulnerability discovery ecosystems,” in Proc. of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’15.
ACM, 2015, pp. 1105–1117.

[18] G. Tassey, “The economic impacts of inadequate infrastructure for
software testing,” National Institute of Standards and Technology, RTI
Project, vol. 7007, no. 011, 2002.

[19] M. Zhivich and R. K. Cunningham, “The real cost of software errors,”
IEEE Security & Privacy, vol. 7, no. 2, 2009.

[20] M. Soni, “Defect prevention: reducing costs and enhanc-
ing quality,” IBM:iSixSigma.com, vol. 19, 2006. [Online].
Available: https://www.isixsigma.com/industries/software-it/defect-
prevention-reducing-costs-and-enhancing-quality/

[21] W. Baziuk, “BNR/NORTEL: path to improve product quality, reliability
and customer satisfaction,” in Sixth International Symposium on
Software Reliability Engineering, ISSRE 1995, Toulouse, France,
October 24-27, 1995, 1995, pp. 256–262. [Online]. Available:
http://dx.doi.org/10.1109/ISSRE.1995.497665

[22] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proc. of the IEEE, vol. 68, no. 9, pp. 1060–1076, Sept 1980.

[23] K. Olmstead and A. Smith, “Americans and cybersecurity,” Pew
Research Center, 2017, (Accessed 07-15-2017). [Online]. Available:
http://www.pewinternet.org/2017/01/26/americans-and-cybersecurity/

[24] J. Surowiecki, The wisdom of crowds. Anchor, 2005.
[25] M. Zhao, A. Laszka, T. Maillart, and J. Grossklags, “Crowdsourced

security vulnerability discovery: Modeling and organizing bug-bounty
programs,” in Proc. of the 4th AAAI Workshop on Mathematical
Foundations of Human Computation, ser. HCOMP ’16, November
2016.

[26] K. Huang, M. Siegel, S. Madnick, X. Li, and Z. Feng, “Poster: Diversity
or concentration? hackers’ strategy for working across multiple bug
bounty programs,” in Proc. of the 37th IEEE Symposium on Security
and Privacy, ser. SP ’16, 2016.

[27] S. Ransbotham, S. Mitra, and J. Ramsey, “Are markets for vulnerabilities
effective,” MIS Quarterly, vol. 36, no. 1, pp. 43–64, 2012.

[28] A. Ozment, “Bug auctions: Vulnerability markets reconsidered,” in
Third Workshop on the Economics of Information Security, 2004.

[29] K. Kannan and R. Telang, “Market for software vulnerabilities? think
again,” Manage. Sci., vol. 51, no. 5, pp. 726–740, May 2005.

[30] A. Algarni and Y. Malaiya, “Software vulnerability markets: Discoverers
and buyers,” International Journal of Computer, Information Science
and Engineering, vol. 8, no. 3, pp. 71–81, 2014.

[31] J. Aranda and G. Venolia, “The secret life of bugs: Going past the errors
and omissions in software repositories,” in Proc. of the 31st International
Conference on Software Engineering, ser. ICSE ’09. IEEE Computer
Society, 2009, pp. 298–308.

[32] M. Hafiz and M. Fang, “Game of detections: how are security
vulnerabilities discovered in the wild?” Empirical Software Engineering,
vol. 21, no. 5, pp. 1920–1959, 2016.

[33] M. Fang and M. Hafiz, “Discovering buffer overflow vulnerabilities
in the wild: An empirical study,” in Proc. of the Eighth International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’14. ACM, 2014, pp. 23:1–23:10.

[34] T. C. Summers, K. J. Lyytinen, T. Lingham, and E. Pierce, “How hackers
think: A study of cybersecurity experts and their mental models,” in
Proc. of the 3rd International Conference on Engaged Management
Scholarship, ser. EMS ’13. EDBAC, 2013.

[35] T. C. Lethbridge, J. Diaz-Herrera, R. J. J. LeBlanc, and J. B. Thompson,
“Improving software practice through education: Challenges and future
trends,” in Future of Software Engineering. IEEE Computer Society,
2007, pp. 12–28.

[36] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in Future of Software Engineering. IEEE Computer Society,
2007, pp. 85–103.

[37] M. Al-Banna, B. Benatallah, and M. C. Barukh, “Software security
professionals: Expertise indicators,” in Proc. of the 2nd IEEE Interna-
tional Conference on Collaboration and Internet Computing, ser. CIC
’16, 2016, pp. 139–148.

[38] J. Cowley, “Job analysis results for malicious-code reverse engineers: A
case study,” Software Engineering Institute, Carnegie Mellon University,
Tech. Rep. CMU/SEI-2014-TR-002, 2014. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=91548

[39] T. J. Holt, “Lone hacks or group cracks: Examining the social
organization of computer hackers,” Crimes of the Internet, pp. 336–355,
2009.

[40] T. J. Holt, “The attack dynamics of political and religiously motivated
hackers,” Cyber Infrastructure Protection, pp. 161–182, 2009.

https://www.beyondtrust.com/resources/white-paper/analyzing-the-effectiveness-and-coverage-of-web-application-security-scanners/
https://www.beyondtrust.com/resources/white-paper/analyzing-the-effectiveness-and-coverage-of-web-application-security-scanners/
https://www.beyondtrust.com/wp-content/uploads/Analyzing-the-Accuracy-and-Time-Costs-of-Web-Application-Security-Scanners.pdf
https://www.beyondtrust.com/wp-content/uploads/Analyzing-the-Accuracy-and-Time-Costs-of-Web-Application-Security-Scanners.pdf
http://www.informit.com/articles/article.aspx?p=1680863
https://hackerone.com/blog/bug-bounty-hacker-report-2016
https://hackerone.com/blog/bug-bounty-hacker-report-2016
https://software-security.sans.org/downloads/appsec-2011-files/vrp-presentation.pdf
https://software-security.sans.org/downloads/appsec-2011-files/vrp-presentation.pdf
https://pages.bugcrowd.com/2016-state-of-bug-bounty-report
https://pages.bugcrowd.com/2016-state-of-bug-bounty-report
https://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/
https://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/
http://dx.doi.org/10.1109/ISSRE.1995.497665
http://www.pewinternet.org/2017/01/26/americans-and-cybersecurity/
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=91548

[41] M. Green and M. Smith, “Developers are not the enemy!: The need for
usable security apis,” IEEE Security Privacy, vol. 14, no. 5, pp. 40–46,
Sept 2016.

[42] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for: The impact of information sources
on code security,” in Proc. of the 37th IEEE Symposium on Security
and Privacy, ser. SP ’16, May 2016, pp. 289–305.

[43] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“How internet resources might be helping you develop faster but less
securely,” IEEE Security Privacy, vol. 15, no. 2, pp. 50–60, March
2017.

[44] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,
and C. Stransky, “Comparing the usability of cryptographic apis,” in
Proc. of the 38th IEEE Symposium on Security and Privacy (SP), ser.
SP ’17, May 2017, pp. 154–171.

[45] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand,
and M. Smith, “Why do developers get password storage wrong? A
qualitative usability study,” CoRR, vol. abs/1708.08759, 2017.

[46] D. Oliveira, M. Rosenthal, N. Morin, K.-C. Yeh, J. Cappos, and
Y. Zhuang, “It’s the psychology stupid: How heuristics explain software
vulnerabilities and how priming can illuminate developer’s blind spots,”
in Proc. of the 30th Annual Computer Security Applications Conference,
ser. ACSAC ’14. ACM, 2014, pp. 296–305.

[47] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. A. F. Weir, and
S. Fahl, “A stitch in time:supporting android developers in writing secure
code,” in Proc. of the 24nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. ACM, 2017.

[48] C. Weir, A. Rashid, and J. Noble, “I’d like to have an argument, please:
Using dialectic for effective app security,” in Proc. of the 2nd European
Workshop on Usable Security, ser. EuroUSEC ’17, 04 2017.

[49] K. Ermoshina, H. Halpin, and F. Musiani, “Can johnny build a protocol?
co-ordinating developer and user intentions for privacy-enhanced secure
messaging protocols,” in Proc. of the 2nd European Workshop on Usable
Security, ser. EuroUSEC ’17, 04 2017.

[50] L. Lo Iacono and P. Gorski, “I do and i understand. not yet true for
security apis. so sad,” in Proc. of the 2nd European Workshop on Usable
Security, ser. EuroUSEC ’17, 04 2017.

[51] P. Morrison, B. H. Smith, and L. Williams, “Surveying security practice
adherence in software development,” in Proc. of the 5th Hot Topics
in Science of Security: Symposium and Bootcamp, ser. HoTSoS ’17.
ACM, 2017, pp. 85–94.

[52] D. Hovemeyer and W. Pugh, “Finding more null pointer bugs, but not
too many,” in Proc. of the 7th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, ser. PASTE ’07.
ACM, 2007, pp. 9–14.

[53] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proc. of
the 35th International Conference on Software Engineering, ser. ICSE
’13. IEEE Press, 2013, pp. 672–681.

[54] L. Layman, L. Williams, and R. S. Amant, “Toward reducing fault fix
time: Understanding developer behavior for the design of automated
fault detection tools,” in Proc. of the First International Symposium
on Empirical Software Engineering and Measurement, ser. ESEM ’07.
IEEE Computer Society, 2007, pp. 176–185.

[55] L. N. Q. Do, K. Ali, B. Livshits, E. Bodden, J. Smith, and E. Murphy-
Hill, “Just-in-time static analysis,” in Proc. of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
’17. ACM, 2017, pp. 307–317.

[56] N. Ayewah and W. Pugh, “A report on a survey and study of static
analysis users,” in Proc. of the 1st Workshop on Defects in Large
Software Systems, ser. DEFECTS ’08. ACM, 2008, pp. 1–5.

[57] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford,
“Questions developers ask while diagnosing potential security vulner-
abilities with static analysis,” in Proc. of the 10th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE ’15. ACM, 2015,
pp. 248–259.

[58] T. W. Thomas, H. Lipford, B. Chu, J. Smith, and E. Murphy-Hill,
“What questions remain? an examination of how developers understand
an interactive static analysis tool,” in Proc. of the 12th Symposium on
Usable Privacy and Security, ser. SOUPS ’16. USENIX Association,
2016.

[59] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C. Mayhorn, and
T. Zimmermann, “Quantifying developers’ adoption of security tools,” in

Proc. of the 10th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE ’15. ACM, 2015, pp. 260–271.

[60] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Proc. of the
37th International Conference on Software Engineering, ser. ICSE ’15.
IEEE Press, 2015, pp. 598–608.

[61] S. C. Sundaramurthy, A. G. Bardas, J. Case, X. Ou, M. Wesch,
J. McHugh, and S. R. Rajagopalan, “A human capital model for
mitigating security analyst burnout,” in Proc. of the 11th Symposium On
Usable Privacy and Security, ser. SOUPS ’15. USENIX Association,
2015, pp. 347–359.

[62] D. Botta, R. Werlinger, A. Gagné, K. Beznosov, L. Iverson, S. Fels, and
B. Fisher, “Towards understanding it security professionals and their
tools,” in Proc. of the 3rd Symposium on Usable Privacy and Security,
ser. SOUPS ’07. ACM, 2007, pp. 100–111.

[63] P. Jaferian, D. Botta, F. Raja, K. Hawkey, and K. Beznosov, “Guidelines
for designing it security management tools,” in Proc. of the 2nd
ACM Symposium on Computer Human Interaction for Management of
Information Technology, ser. CHiMiT ’08. ACM, 2008, pp. 7:1–7:10.

[64] N. F. Velasquez and S. P. Weisband, “Work practices of system
administrators: Implications for tool design,” in Proc. of the 2nd
ACM Symposium on Computer Human Interaction for Management of
Information Technology, ser. CHiMiT ’08. ACM, 2008, pp. 1:1–1:10.

[65] S. C. Sundaramurthy, J. McHugh, X. Ou, M. Wesch, A. G. Bardas, and
S. R. Rajagopalan, “Turning contradictions into innovations or: How
we learned to stop whining and improve security operations,” in Proc.
of the 12th Symposium on Usable Privacy and Security, ser. SOUPS
’16. USENIX Association, 2016, pp. 237–251.

[66] S. Fahl, Y. Acar, H. Perl, and M. Smith, “Why eve and mallory (also)
love webmasters: A study on the root causes of ssl misconfigurations,”
in Proc. of the 9th ACM Symposium on Information, Computer and
Communications Security, ser. ASIA CCS ’14. ACM, 2014, pp. 507–
512.

[67] K. Krombholz, W. Mayer, M. Schmiedecker, and E. Weippl, “"i have
no idea what i’m doing" - on the usability of deploying HTTPS,” in
Proc. of the 26th USENIX Security Symposium, ser. USENIX Security
’17. USENIX Association, 2017, pp. 1339–1356.

[68] S. Watson and H. R. Lipford, “A proposed visualization for vulnerability
scan data,” in Proc. of the 13th Symposium on Usable Privacy and
Security, ser. SOUPS ’17. USENIX Association, 2017.

[69] A. M’manga, S. Faily, J. McAlaney, and C. Williams, “Folk risk analysis:
Factors influencing security analysts’ interpretation of risk,” in Proc. of
the 13th Symposium on Usable Privacy and Security, ser. SOUPS ’17.
USENIX Association, 2017.

[70] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping
johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study,” 2016 IEEE Symposium on Security and
Privacy (SP), vol. 00, pp. 158–177, 2016.

[71] A. Beautement, I. Becker, S. Parkin, K. Krol, and A. Sasse, “Productive
security: A scalable methodology for analysing employee security
behaviours,” in Proc. of the 12th Symposium on Usable Privacy and
Security, ser. SOUPS ’16. USENIX Association, 2016, pp. 253–270.

[72] S. Pahnila, M. Siponen, and A. Mahmood, “Employees’ behavior
towards it security policy compliance,” in Proc. of the 40th Hawaii
International Conference on System Sciences, ser. HICSS ’07, Jan 2007,
pp. 156b–156b.

[73] M. Workman, W. H. Bommer, and D. Straub, “Security lapses and
the omission of information security measures: A threat control model
and empirical test,” Computers in human behavior, vol. 24, no. 6, pp.
2799–2816, Sep. 2008.

[74] M. Siponen, S. Pahnila, and M. Adam Mahmood, “Employees’
adherence to information security policies: An empirical study,” in
Proc. of the 22nd International Information Security Conference, ser.
SEC ’07. Springer US, 2007, pp. 133–144.

[75] J. D’Arcy, T. Herath, and M. Shoss, “Understanding employee responses
to stressful information security requirements: A coping perspective,”
Journal of Management Information Systems, vol. 31, pp. 285–318, 10
2014.

[76] K. Guo, Y. Yuan, N. Archer, and C. Connelly, “Understanding
nonmalicious security violations in the workplace: A composite behavior
model,” Journal of management information systems, vol. 28, no. 2, pp.
203–236, Oct. 2011.

[77] J. M. Blythe, L. Coventry, and L. Little, “Unpacking security policy
compliance: The motivators and barriers of employees’ security behav-

iors,” in Proc. of the 11th Symposium On Usable Privacy and Security,
ser. SOUPS ’15. USENIX Association, 2015, pp. 103–122.

[78] I. Becker, S. Parkin, and M. A. Sasse, “Finding security champions
in blends of organisational culture,” in Proc. of the 2nd European
Workshop on Usable Security, ser. EuroUSEC ’17, 04 2017.

[79] K. Charmaz, Constructing Grounded Theory: A Practical Guide Through
Qualitative Analysis. SagePublication Ltd, London, 2006.

[80] G. Guest, A. Bunce, and L. Johnson, “How many interviews are enough?
an experiment with data saturation and variability,” Field methods,
vol. 18, no. 1, pp. 59–82, 2006.

[81] Bugcrowd, “Home - bugcrowd,” Bugcrowd, 2016, (Accessed
02-18-2017). [Online]. Available: http://bugcrowd.com

[82] CTFTime, “Ctftime.org / all about ctf (capture-the-flag),” CTFTime,
2017, (Accessed 06-08-2017). [Online]. Available: https://ctftime.org

[83] Meetup, “We are what we do | meetup,” Meetup, 2017, (Accessed
06-08-2017). [Online]. Available: https://www.meetup.com

[84] “Association of software testing | software testing professional
association,” Association of Software Testing, 2017, (Accessed 06-08-
2017). [Online]. Available: https://www.associationforsoftwaretesting.
org/

[85] “Ministry of testing - co-creating smart testers,” Ministry of
Testing, 2017, (Accessed 06-08-2017). [Online]. Available: https:
//www.ministryoftesting.com/

[86] HackerOne, “Hackerone: Vulnerability coordination and bug bounty
platform,” HackerOne, 2016, (Accessed 02-18-2017). [Online].
Available: http://hackerone.com

[87] Google, “Issues - chromium,” Google, 2016, (Accessed 02-18-2017).
[Online]. Available: https://bugs.chromium.org/p/chromium/issues/list

[88] Mozilla, “Components for firefox,” Mozilla, 2016, (Accessed
02-18-2017). [Online]. Available: https://bugzilla.mozilla.org/
describecomponents.cgi?product=Firefox

[89] M. C. Harrell and M. A. Bradley, “Data collection methods. semi-
structured interviews and focus groups,” Rand National Defense
Research Institute, Tech. Rep., 2009.

[90] J. Annett, “Hierarchical task analysis,” Handbook of cognitive task
design, vol. 2, pp. 17–35, 2003.

[91] A. Strauss and J. Corbin, Basics of qualitative research: Techniques
and procedures for developing grounded theory. Newbury Park, CA:
Sage, 1998, vol. 15.

[92] D. G. Freelon, “Recal: Intercoder reliability calculation as a web service,”
International Journal of Internet Science, vol. 5, no. 1, pp. 20–33, 2010.

[93] A. F. Hayes and K. Krippendorff, “Answering the call for a standard
reliability measure for coding data,” Communication methods and
measures, vol. 1, no. 1, pp. 77–89, 2007.

[94] K. Krippendorff, “Reliability in content analysis,” Human Communica-
tion Research, vol. 30, no. 3, pp. 411–433, 2004.

[95] M. Lombard, J. Snyder-Duch, and C. C. Bracken, “Content analysis in
mass communication: Assessment and reporting of intercoder reliability,”
Human communication research, vol. 28, no. 4, pp. 587–604, 2002.

[96] A. L. Holbrook, M. C. Green, and J. A. Krosnick, “Telephone
versus face-to-face interviewing of national probability samples with
long questionnaires: Comparisons of respondent satisficing and social
desirability response bias,” Public opinion quarterly, vol. 67, no. 1, pp.
79–125, 2003.

[97] R. Tourangeau and T. Yan, “Sensitive questions in surveys.” Psycholog-
ical bulletin, vol. 133, no. 5, p. 859, 2007.

[98] BugCrowd, “Inside the mind of a hacker,” BugCrowd, 2016, (Accessed
02-18-2017). [Online]. Available: https://pages.bugcrowd.com/inside-
the-mind-of-a-hacker-2016

[99] Bugcrowd, “Defensive vulnerability pricing model,” Bugcrowd, Tech.
Rep., 2015. [Online]. Available: https://pages.bugcrowd.com/whats-a-
bug-worth-2015-survey

[100] J. Haney and W. Lutters, “Skills and characteristics of successful
cybersecurity advocates,” in Proc. of the 13th Symposium on Usable
Privacy and Security, ser. SOUPS ’17. USENIX Association, 2017.

[101] CTFTime, “Ctf? wtf?” CTFTime, 2017, (Accessed 06-08-2017).
[Online]. Available: https://ctftime.org/ctf-wtf/

[102] T. of Bits, “Find a ctf - ctf field guide,” Trail of Bits, 2017, (Accessed
06-08-2017). [Online]. Available: https://trailofbits.github.io/ctf/intro/
find.html

[103] R. S. Cheung, J. P. Cohen, H. Z. Lo, F. Elia, and V. Carrillo-
Marquez, “Effectiveness of cybersecurity competitions,” in Proc. of the
International Conference on Security and Management, ser. SAM ’12.
The Steering Committee of The World Congress in Computer Science,

Computer Engineering and Applied Computing (WorldComp), 2012,
pp. 1–5.

[104] D. H. Tobey, P. Pusey, and D. L. Burley, “Engaging learners in
cybersecurity careers: Lessons from the launch of the national cyber
league,” ACM Inroads, vol. 5, no. 1, pp. 53–56, Mar. 2014.

[105] ForAllSecure, “Hackcenter,” ForAllSecure, 2017, (Accessed 07-25-
2017). [Online]. Available: https://hackcenter.com/about

[106] M. C. Kim and M. J. Hannafin, “Scaffolding problem solving in
technology-enhanced learning environments (teles): Bridging research
and theory with practice,” Computers & Education, vol. 56, no. 2, pp.
403 – 417, 2011.

[107] Syncack, “Synack - crowdsourced security,” Synack, 2017, (Accessed
06-08-2017). [Online]. Available: https://www.synack.com

[108] J. Doyle, “Google-nest-cam-bug-disclosures,” 2017, (Accessed 08-1-
2017). [Online]. Available: https://github.com/jasondoyle/Google-Nest-
Cam-Bug-Disclosures

[109] Fyodor, “Full Disclosure Mailing List,” SecLists.Org, 2017, (Accessed
08-01-2017). [Online]. Available: http://seclists.org/fulldisclosure/

[110] U.S. Department of Commerce, “National Vulnerability Database,”
NIST, 2017, (Accessed 08-01-2017). [Online]. Available: https:
//nvd.nist.gov/

[111] Offensive Security, “Offensive security’s exploit database archive,” 2017,
(Accessed 08-1-2017). [Online]. Available: https://www.exploit-db.com/

APPENDIX A
SURVEY QUESTIONNAIRE

Vulnerability-discovery experience.
1) On a scale from 1-5, how would you assess your

vulnerability discovery skill (1 being a beginner and 5
being an expert)?

2) Please select the range which most closely matches the
number of software vulnerabilities you have discovered.
(Choices: 0-3, 4-6, 7-10, 11-25, 26-50, 51-100, 101-50, >
500)

3) How many total years of experience do you have with
vulnerability discovery?

4) Please select the range that most closely matches the
number of hours you typically spend performing software
vulnerability discover tasks per week. (Choices: < 5, 5-10,
10-20, 20-30, 30-40, > 40)

5) Please specify the range that most closely matches the
number of hours you typically spend on non-vulnerability
discovery, technical tasks per week (e.g. software or
hardware programming, systems administration, network
analysis, etc.). (Choices: < 5, 5-10, 10-20, 20-30, 30-40,
> 40)

6) What percentage of the bugs you have discovered were
found in the following contexts?

a) Bug Bounty programs (i.e., sold specific bug to vendor)
b) General Software Testing
c) Penetration Testing
d) Vulnerability finding exercise (e.g., Capture-the-Flag

competition, security course)
e) Unrelated to a specific program (i.e., for fun or curios-

ity)
f) Other

7) What percentage of the bugs you have discovered were
in software of the following types?

a) Host (e.g., Server or PC)
b) Web Application

http://bugcrowd.com
https://ctftime.org
https://www.meetup.com
https://www.associationforsoftwaretesting.org/
https://www.associationforsoftwaretesting.org/
https://www.ministryoftesting.com/
https://www.ministryoftesting.com/
http://hackerone.com
https://bugs.chromium.org/p/chromium/issues/list
https://bugzilla.mozilla.org/describecomponents.cgi?product=Firefox
https://bugzilla.mozilla.org/describecomponents.cgi?product=Firefox
https://pages.bugcrowd.com/inside-the-mind-of-a-hacker-2016
https://pages.bugcrowd.com/inside-the-mind-of-a-hacker-2016
https://pages.bugcrowd.com/whats-a-bug-worth-2015-survey
https://pages.bugcrowd.com/whats-a-bug-worth-2015-survey
https://ctftime.org/ctf-wtf/
https://trailofbits.github.io/ctf/intro/find.html
https://trailofbits.github.io/ctf/intro/find.html
https://hackcenter.com/about
https://www.synack.com
https://github.com/jasondoyle/Google-Nest-Cam-Bug-Disclosures
https://github.com/jasondoyle/Google-Nest-Cam-Bug-Disclosures
http://seclists.org/fulldisclosure/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://www.exploit-db.com/

c) Network Infrastructure
d) Mobile Application
e) API
f) iOT or Firmware
g) Other

8) What percentage of the bugs you have discovered were
of the following types?

a) Memory Corruption (e.g., buffer overflow)
b) Input Validation (e.g., XSS, SQL injection, format string

misuse)
c) Cryptographic Error (e.g., weak key use, bad random

number generator)
d) Configuration Error (e.g., unpatched network device)
e) Incorrect Calculation (e.g., integer overflow, off-by-one

error)
f) Protection Mechanism Error (e.g., incorrect access

control, improper certificate check)
g) Poor Security Practices (e.g., insecure data storage or

transmission)
Note: In the previous three questions, we did not provide

our own definitions for software type or program type and only
provided examples for vulnerability types. We selected terms
used by multiple popular bug bounty platforms (i.e., SynAck,
HackerOne, and BugCrowd) and allowed participants to select
options based on their own definitions. During the interview,
we included follow-up questions to understand their definitions
for the top ranked item in each category.

Technical skills.

1) On a scale from 1 to 5, how would you assess your
proficiency in each of the following technical skills (1
being a beginner or having no experience and 5 being an
expert)?

a) Networking
b) Database Management
c) Object-Oriented Programming (e.g., Java, C++)
d) Functional Programming (e.g., OCaml, Haskell)
e) Procedural Programming (e.g., C, Go)
f) Web Development
g) Mobile Development
h) Distributed/Parallel Computing
i) System Administration
j) Reverse Engineering
k) Cryptanalysis
l) Software Testing

m) Test Automation
n) Hardware/Firmware Development
o) Other

Demographics.

1) Please specify the gender with which you most closely
identify. (Choices: Male, Female, Other, Prefer not to
answer)

2) Please specify your age. (Choices: 18-29, 30-39, 40-49,
50-59, 60-69, > 70, Prefer not to answer)

3) Please specify your ethnicity (Choices: White, Hispanic or
Latino, Black or African American, American Indian or
Alaska Native, Asian, Native Hawaiian, or Pacific Islander,
Other)

4) Please specify which country/state/province you live in.
5) Please specify the highest degree or level of school you

have completed (Choices: Some high school credit, no
diploma or equivalent; High school graduate, diploma or
the equivalent; Some college credit, no degree; Trade/tech-
nical/vocational training; Associate degree; Bachelor’s
degree; Master’s degree; Professional degree; Doctorate
degree)

6) If you are currently a student or have completed a college
degree, please specify your field(s) of study (e.g., Biology,
Computer Science, etc).

7) Please select the response option that best describes
you current employment status. (Choices: Working for
payment or profit, Unemployed, Looking after home/fam-
ily, Student, Retired, Unable to work due to permanent
sickness or disability, Other)

8) If you are working for payment, please specify your
current job title.

9) If you are currently working for payment, please specify
the business sector which best describes you job (Choices:
Technology, Government or government contracting,
Healthcare and social assistance, Retail, Construction, Edu-
cational services, Finance, Arts/Entertainment/Recreation,
Other)

10) Please specify the range which most closely matches
your total, pre-tax, household income in 2016. (Choices:
< $29,999, $30,000-$49,999, $50,000-$74,999, $75,000-
$99,999, $100,000-$124,999, $125,000-$149,999,
$150,000-$199,999, > $200,000)

11) Please specify the range which most closely matches
your total, pre-tax, household income specifically
from vulnerability discovery and software testing in
2016. (Choices: < $999, $1,000-$4,999, $5,000-$14,999,
$15,000-$29,999, $30,000-$49,999, $50,000-$74,999,
$75,000-$99,999, $100,000-$124,999, $125,000-$145,999,
$150,000-$199,999, > $200,000)

APPENDIX B
INTERVIEW QUESTIONS

A. General experience

1) What was the motivation/thought process behind perform-
ing vulnerability discovery in the different contexts you
listed in the survey?

2) If most of the bugs are in a particular software or bug
type:

a) Why do you focus on a specific area? Why this area?
b) Have you ever developed software in this area?
c) Have you worked outside of this area of expertise in

the past? What was the reason for the change?
3) If the types of bugs are generally split across software or

bug type:

a) What do you see as the importance of staying general?
b) Are there any unique trends you’ve noticed that encour-

age you to stay general with your skills?

B. Task analysis

Program selection.
1) In general, how do you decide which software [for testers:

part of the program] to investigate for vulnerabilities and
which not? What factors do you consider when making
this decision?

2) Which of these factors do you consider to be the most
important? Why?

3) Are there any factors that you consider non-starters (i.e.
reason not to try looking for bugs)?

4) Is there a specific process you use when determining
where to look for vulnerabilities and which of these
characteristics different software exhibit?

a) Why did you choose this particular process?
b) How did you develop/learn this process?
c) Are there any tools that you use that assist you in this

process?
i) What were the benefits of these tools? Weaknesses?

ii) Have you ever used anything else for this purpose?
What led you to switch?

Vulnerability-discovery process.
1) Once you’ve selected a software target, what steps do you

take when looking for vulnerabilities?
a) For each step:

i) What are your goals for this step? What information
are you trying to collect?

ii) What actions do you take to complete this step?
Have you every tried anything else? What are the
advantages/disadvantages of this set of actions?

iii) Are there any tools that you use to complete
this step? What were the benefits of these tools?
Weaknesses?

iv) What skills do you use to complete this task? Why
do you think these skills are important? How did
you develop/learn these skills?

v) How do you know when you have successfully
completed this step?

vi) How do you decide when to take this step? Is
it something you repeat multiple times? Do you
always do this step?

vii) How did you learn to take this step? Why did you
find this source of information helpful?

2) Is there anything else you haven’t mentioned that you’ve
done to try to find vulnerabilities and stopped? What are
the main differences between your current process and
what you did in the past? What led you to switch?

Reporting.
1) What kinds of information do you include in the report?

Do you always report the same information? What factors

do you consider when deciding which information to
include in the report?

2) What information do you think is the most important in
vulnerability reports?

3) Have you ever included/excluded anything that you didn’t
feel was important, but just included/excluded because
you felt it was traditional/expected?

4) What bug report information is the most difficult/time
consuming to get?

5) Do you ever look at anyone else’s bug reports to learn
from them? Why do you think these are helpful?

6) Do you use any special tool for reporting? What were the
benefits of these tools? Weaknesses?

7) Do the organizations you submit to reach out to you with
questions about the bugs? If so, what do they ask about?

8) Can you give me an example of a bad/good experience
you’ve had with reporting? In your opinion, what factors
are the most important for a good reporting experience?

C. Skill development

Learning.
1) Imagine you were asked for advice by an enthusiastic

young person interested in learning about vulnerability
discovery. How would you recommend they get started?
What steps would you suggest they take?

Community participation.
1) Do you have regular communication with other hackers

or software testers?
2) How do you typically communicate with others?
3) How important is each community you participate in to

your/others development?
4) What community that you belong to do you find most

useful? Why?
5) What information do you typically share?
6) How often do you communicate (specifically regarding

technical information)?
7) How close are the relationships you have with others?

How many other hackers/testers do you communicate
with?

	I Introduction
	II Related work
	II-A Bug identification process
	II-B Tester and hacker characteristics
	II-C Measurement of bug bounty programs
	II-D Other studies with developers and security professionals

	III Methodology
	III-A Recruitment
	III-B Interview protocol
	III-C Data analysis
	III-D Limitations

	IV Participants
	V Vulnerability discovery process
	VI Influencing factors
	VI-A Vulnerability discovery experience
	VI-A1 How does experience affect the process?
	VI-A2 How is experience developed?

	VI-B Underlying system knowledge
	VI-B1 How does system knowledge affect the process?
	VI-B2 How is system knowledge developed?

	VI-C Access to development process
	VI-D Motivation

	VII Discussion and Recommendations
	VII-A Training in the workplace
	VII-B Hacker-developer relationships
	VII-C Tailor compensation to motivation

	References
	Appendix A: Survey questionnaire
	Appendix B: Interview questions
	B-A General experience
	B-B Task analysis
	B-C Skill development

