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Abstract—According to recent research, motion sensors avail-
able on current smartphone platforms may be sensitive to speech
signals. From a security and privacy perspective, this raises a
serious concern regarding sensitive speech reconstruction, and
speaker or gender identification by a malicious application having
unrestricted access to motion sensor readings, without using the
microphone.

In this paper, we revisit this important line of research and
closely inspect the effect of speech on smartphone motion sensors,
in particular, gyroscope and accelerometer. First, we revisit the
previously studied scenario (Michalevsky et al.; USENIX Security
2014), where the smartphone shares a common surface with a
loudspeaker (with subwoofer) generating speech signals. We ob-
serve some effect on the motion sensor signals, which may indeed
allow speaker and gender recognition to an extent. However, we
also argue that the recorded effect on the sensor readings is
possibly from conductive vibrations through the shared surface
instead of direct acoustic vibrations due to speech as perceived in
previous work. Second, we further extend the previous work by
analyzing the effect of speech produced by (1) other less powerful
speakers like the in-built laptop and smartphone speakers, and (2)
live humans. Our experiments show that in-built laptop speakers
were only able to affect the accelerometer when the laptop and
the motion sensor shared a surface. Smartphone speakers were
not found to be powerful enough to invoke a response in the
motion sensors through aerial vibrations. We also report that in
the presence of live human speech, we did not notice any effect
on the motion sensor readings.

Our results have two-fold implications. First, human-rendered
speech seems potentially incapacitated to trigger smartphone
motion sensors within the limited sampling rates imposed by
the smartphone operating systems. Second, it seems that even
machine-rendered speech may not be powerful enough to affect
smartphone motion sensors through the aerial medium, although
it may induce vibrations through a conductive surface that these
sensors, especially accelerometer, could pick up if a relatively
powerful speaker is used. Overall, our results suggest that
smartphone motion sensors may pose a threat to speech privacy
only in some limited scenarios.
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I. INTRODUCTION

Recent developments in the mobile device industry have

seen an increase in the capabilities of the smartphone hardware

to support applications that provide a comprehensive user

experience. Motion sensors have played an important role

in this task by collecting information about a user’s activity,

movement, and orientation. Accelerometers and gyroscopes are

two of the most commonly used sensors on these devices that

measure the motion and orientation of the device. However,

recent studies have suggested a security flaw in these sensors

by noticing a sensitiveness towards low frequency audio sig-

nals (specifically, speech). In particular, it has been believed

that there exists a possibility of turning these sensitive sensors

into microphones for picking up speech signals [1], [2].1

The possibility of turning motion sensors into microphones,

capable of recording speech, has very adverse real-world

implications. These motion sensors are readily available on

smartphones and other smart wearable devices that have

become a predominant feature in everyone’s life. A unique

fact about motion sensors on current smartphone platforms,

specifically Android, is their unrestricted access. An applica-

tion does not require special permission from the user to access

the motion sensor readings. Hence, a malicious application,

by obtaining access to motion sensor readings, may be able

to achieve a similar threat level as directly accessing the

microphone (that requires explicit permission) and recording

an unsuspecting victim’s voice or conversation.

The security threats of a malicious application gaining

access to an unsuspecting victim’s voice or conversation are

particularly devastating. Sensitive information can be leaked

in surreptitious manner if the malicious application is able to

reconstruct speech from motion sensor readings. For example,

sensitive verbal communications would be exposed, including

information such as credit card numbers and social security

numbers as the victim speaks into or near the phone such

as over a phone call. In addition, various aspects of the

eavesdropped speech signals can be utilized for speaker and

gender identification. This threat violates the privacy of the

victim(s) by revealing the identity and gender information

that may otherwise be considered personal and should not be

revealed unless proper permission has been granted by the

involved parties.

In addition to human-rendered speech, machine-rendered

speech also has the potential to be exploited by gaining access

to motion sensors. A particular example could be closed

auditorium or a meeting hall that is soundproof in order to

avoid acoustic eavesdropping from outside world. If speech

1The work reported in [2] proposes a benign use case of detecting “hot
keywords” for voice commands based on accelerometer. In this paper, our
focus is on malicious use case of detecting speech through both gyroscope
[1] and accelerometer readings.



is being communicated inside the hall using loudspeakers, a

smartphone placed near the loudspeaker may pick up speech

from the loudspeakers through its motion sensors. Thus, the

attacker may be able to compromise the speech privacy of

those present in the meeting. Since loudspeakers serve to

amplify the sound, the effect on motion sensors may be more

pronounced than live human speech thereby facilitating the

attacker’s task. Other examples for such a scenario could

be private speeches or dinners where speech privacy is an

essential requirement.

Another scenario of machine-rendered speech leakage may

involve a user placing their smartphone in vicinity of their

laptop while using the laptop’s speakers. In this scenario, the

sound from the laptop’s speakers could possibly be picked up

by the motion sensors of the user’s smartphone. An extension

to this case would be speech emanating from the smartphone

speakers that could be picked up by the motion sensors of

a smartphone. The in-built laptop and smartphone speakers

are usually less powerful (than loudspeakers) which may have

an impact on the motion sensors’ capability to record speech

generated by such commodity speakers.

In this work, we systematically explore the reaction of

motion sensors to speech signals under different environments.

We specifically consider possible threat scenarios and mark

out the ones where speech privacy attacks that exploit motion

sensors may be possible. As such, we do not build or improve

upon any such attacks that already exist in literature. Our as-

sumption is that in all our potential threat scenarios, exploiting

motion sensors for speech recognitions (as proposed in [1],

[2]) would be feasible and their accuracies can potentially be

improved with sophisticated machine learning, increased sam-

pling rate, and an increased sample size. In the initial phase,

we revisit representative prior scenarios that were investigated

in [1], [2] using machine-rendered speech. Since machine-

rendered speech can be adjusted to have varying levels of

loudness, these scenarios serve to outline the requirements

that should be met in order to have a noticeable effect on the

motion sensors. In addition, we design and study the effect of

speech on motion sensors in other novel settings that have not

been considered before, to explore the broader reach of this

category of threat to user’s speech privacy.

Further, we consider a natural scenario of speech signals

rendered by a human subject in close proximity of the phone.

Since the assumptions of previous work [1], [2] suggest that

the motion sensors are responsive to low frequency audio

signals (especially speech) to some extent, we measure the

susceptibility of the motion sensors against human speech. The

scenario involving live human speech has not been reported

in prior research [1], [2].2

Our Contributions: We dissect the threat to speech privacy

using motion sensors and assess its realism by analyzing the

scenarios in which speech signals, traveling through air or

conductive solid surfaces, affect the motion sensor readings.

2Confirmed via personal communication with 1st author of [1], [2].

We do not seek to extend or improve upon the attacks

developed in [1], [2] rather find out the scenarios where

such attacks may be deployed successfully for compromising

speech privacy. We believe that our work makes the following

key contributions:

1) Effect of Machine-Rendered Speech on Smartphone

Motion Sensors: We observe the effect of machine

rendering of the human speech on accelerometer and

gyroscope readings in several settings. Using frequency

and/or time domain analysis, we show that while there

was no apparent change in sensor readings when there

was no interaction between the physical world of the

machine and the smartphone, some effect was observed

when the machine and the device shared a surface (this

setting mimics the scenario tested in [1]3).

This analysis seems to indicate that the sensors picked

up surface vibrations or conductive vibrations, but not

the acoustic aerial vibrations. As accelerometer sen-

sor has been shown to pick up surface vibrations of

keystrokes, making it possible to decode the typed in-

formation [3], we suggest that the surface, on which the

smartphone and the speech rendering device is placed,

plays an important role in the conduction of sound

alongside the capability of the speech generating device.

In particular, we find that relatively powerful loudspeak-

ers (such as subwoofers) may be able to create such

noticeable vibrational effects. In addition, in-built laptop

speakers were able to produce faint response in the

accelerometer when the laptop and the motion sensor

shared a surface. Smartphone speakers were not power-

ful enough to invoke a response in the motion sensors

through aerial vibrations. This analysis is presented in

Section VI-B-VI-D.

2) Effect of Live Human Speech on Smartphone Motion

Sensors: We measure the effect of human speech on

the motion sensor readings (Section VI). Using same

methodology as above, we did not notice any significant

changes in the motion sensors’ measurements indicating

that these sensors may not be significantly impacted

by the human-rendered speech signals. We validate this

result with a number of male and female speakers. This

analysis is presented in Section VI-E.

Implications and Significance of Our Work: We believe

that our work has important implications (a summary of our

primary insights is captured in Section VII Table I). Our first

key result is that human-rendered speech may potentially be

incapable of triggering the smartphone motion sensors within

the limited sampling rates (200Hz for Android) imposed by the

mobile operating systems. This fact may bear good news for

the security community since zero-permission motion sensors

may not be exploited for directly deducing sensitive live

speech spoken by a human entity.

Our second major insight is that even machine-rendered

3Confirmed via personal communication with 1st author of [1].



speech may not be powerful enough to impact smartphone mo-

tion sensors “through air”, although it may induce vibrations

through a conductive surface that these sensors could pick

up. However, we believe that conducting vibrations represents

an indirect (possibly less common) threat scenario involving

a relatively powerful speaker that may also be a positive

implication to the field of speech privacy.

Overall, the broader significance of our work is decon-

structing the perception in the community that motion sen-

sors can be exploited to compromise human conversations

on smartphones. Live human speech was not tested in [1]

while we have included different scenarios including human

speech and speech through laptops and smartphone speakers.

We show that the threat perceived by [1] does not go be-

yond loudspeaker/Laptop-Same-Surface scenarios. Such per-

ceived threats raised by the potential of speech construction,

speaker identification, and gender identification based on zero-

permission motion sensors would have serious implications

to the society as a whole. However, given that the research

pointing to these threats is in its nascent stage [1], [2], it is

very important to examine in detail the threat posed by this

type of side channel attack under common use case scenarios

where motion sensors could be exploited thereby threatening

speech privacy.

Specific to the context of speech inference through motion

sensors, it is important to re-validate the threat, especially

given that the notion of this threat is appealing to people and

has already made a significant impact through media coverage

in premium outlets worldwide [4], [5], [6], [7], [8], [9], [10],

[11]. This may have created a sense of insecurity among the

readers. Our work, on the contrary, shows that speech infer-

ence, speaker identification and gender identification based on

current smartphone motion sensors may not be feasible in all

situations, given that human-rendered speech does not seem

to have a direct effect on the readings of these sensors in such

conditions. The machine-rendered speech effect seems limited

to conductive vibrations, which are dependent on the contact

surface and the audio source.

II. BACKGROUND AND RELATED WORK

Motion sensors are a small piece of technology that measure

and record a physical, motion-relevant property. This measure-

ment or reading is then utilized by an application for required

purposes. Accelerometers and gyroscopes are the common

motion sensors deployed on smartphones. An accelerometer is

used to measure movement and orientation and the gyroscope

is used to measure angular rotation, across x, y, and z axes.

Motion sensors have been shown prone to acoustic noise

particularly at high frequency and power level in [12], [13],

[14], which showed that MEMS gyroscopes are susceptible

to high power, high frequency noise that contains frequency

components in proximity of the resonating frequency of the

gyroscope’s proof mass. This concept of work was further

utilized by Son et al. [15] to interfere with the flight control

system of a drone using intentional sounds that were produced

by a Bluetooth speaker attached to the drones with a sound

pressure level of 113dB. This attack was enough to destabilize

one of the target drones used in the experiment due to fluctu-

ations in the output of the gyroscope from the interference of

the noise near the resonant frequency of the sensor.

The use of motion sensors (gyroscope, in particular) as a

microphone to pick up speech signals was first reported by

Michalevsky et al. [1]. They showed that the gyroscope sensor

in smartphones might be sensitive enough to be affected by

speech signals. Since gyroscope sensor in smartphones has

a sampling rate of 200Hz, there exists an overlap with the

frequency range of human voice especially at the lower end

of the spectrum.

In another work done by Zhang et al. [2], it was shown

that accelerometer readings could be affected by speech. In

particular, they reported that it was possible to detect the

voice commands (hotwords) spoken by the user through the

accelerometer sensor.

Both [1] and [2] used speech that was produced by either a

loudspeaker or a phone speaker to test its effect on the sensors.

The Gyrophone [1] setup tested the impact of speech generated

by a loudspeaker (with a subwoofer) on a phone placed on

the same surface as the loudspeaker. AccelWord [2] tested

the impact of speech generated by the phone speaker. We re-

investigate both approaches in our work and extend them to

other possible scenarios that have not been studied before.

In addition, there are examples of motion sensors leaking

information other than speech, thereby compromising user

privacy through another class of attacks. Cai et al. [16] used

motion sensors to infer keystrokes from virtual keyboards

on smartphone’s touchscreen. Using vibration patterns from

different parts of the keyboard, they were able to recover

more than 70% of the keystrokes. This work was extended

by Owusu et al. [17] by extracting 6-character passwords by

logging accelerometer readings during password entry. Xu et

al. [18] performed a similar study and were able to extract

confidential user input (passwords, phone numbers, credit card

details etc.) using motion sensors. In a work similar to [19],

Miluzzo et al. [20] showed that it was possible to identify tap

location on smartphone’s screen with an accuracy of 90% and

english letters could be inferred with an accuracy of 80%.

III. MOTION SENSOR DESIGN

Motion sensors in smartphone and other smart devices

are implemented as micro-electro-mechanical system (MEMS)

that uses miniaturized mechanical (levers, springs, vibrating

structures, etc.) and electro-mechanical (resistors, capacitors,

inductors, etc.) elements developed using microfabrication.

They are designed to work in coordination to sense and mea-

sure the physical properties of their surrounding environment.

MEMS Gyroscope: A gyroscope is a motion-sensing device,

based on the principle of conservation of momentum, that can

be used to measure angular velocity. An MEMS gyroscope

works on the principle of rotation of vibrating objects or

Coriolis effect [21]. This effect causes a deflection to the

path of the rotating mass when observed in its rotating

reference frame. MEMS gyroscopes fall in the category of



vibrating structure gyroscope as they use a vibrating mass in

their design. The Coriolis effect described above causes the

vibrating mass to exert a force that is read from a capacitive

sensing structure supporting the vibrating mass.

MEMS Accelerometer: An accelerometer is an electro-

mechanical device that can be used to measure gravity and

dynamic acceleration such as motion and vibrations. The

basic design of an MEMS accelerometer can be modeled

as mass-spring system. A proof mass (an object of known

quantity of mass) is attached to a spring of known spring

constant, which in turn is attached to the support structure. An

external acceleration causes the proof mass to move, causing a

capacitive change that is measured to provide the acceleration

value. It may also be noted that the accelerometer does not

measure the rate of change of velocity rather it measures

acceleration relative to gravity or free-fall.

IV. PRELIMINARIES AND ATTACK SCENARIOS

In this section, we discuss some preliminary notions that

will be used in our analysis of motion sensor behavior in the

presence of speech. We also examine the signal characteristics

of speech and the response of motion sensors in the frequency

range of the speech. We further look at scenarios that could be

potential avenues for executing a side channel attack against

speech privacy by exploiting the motion sensors.

A. Basic Audio Principles

The fundamental frequency for speech is between 100Hz to

400Hz. The fundamental frequency for a human male speech

lies in the range 85Hz-180Hz and for a human female from

165Hz-255Hz. The fundamental frequency may change while

singing where it may range from 60Hz to 1500Hz [22]. The

sampling frequency of the MEMS sensors could range up to

8kHz. For example, the sampling frequency (also referred to

as output data rate) in the latest Invensense motion sensor chip

MPU9250 is described as 8kHz for the gyroscope and 4kHz

for the accelerometer [23]. However, the operating platforms

on smartphones often place a limit on the sampling frequency

of these devices. This limit is often implemented in the device

driver code and is 200Hz for Android platform [1], [2] in order

to prevent battery drain from frequent updates.

Nyquist sampling theorem states that to capture all the

information about the signal, sampling frequency should be

at least twice the highest frequency contained in the signal.

For the MEMS motion sensors embedded in the smartphones,

the sampling frequency is restricted to 200Hz that implies that

they can only capture frequencies up to 100Hz. Hence, the

motion sensor may only be able to capture a small range of

the human speech in the sub-100Hz frequency range although

due to aliasing effect we can expect higher frequency speech

to feature in the sub-100Hz range as reported in [1].

B. Experimental Attack Scenarios

In order to test the effect of speech on MEMS motion

sensors, we conceptualize different scenarios that encompass

the intended objective of this work. There are three factors

that should be taken into account in the experiments that affect

the behavior of the motion sensors: (1) Source of speech, (2)

Medium through which the audio travels, and (3) Pressure

level of speech.

1) Source of Speech: Speech can be generated through

various sources that we broadly classify into two cat-

egories: human voices and machine-rendered speech.

Human voices could further be broken down into male

voices and female voices. Machine-rendered speech in-

volves rendering of a human voice through a speaker

system. In our experiments, we use (a) a powerful speech

generating device like a conventional loudspeaker with

subwoofers (that boost low frequency sounds and may

induce vibrations), and (b) in-built laptop speakers and

smartphone speakers that are less powerful, as possible

sources of speech.

2) Audio Transfer Medium: To consider the effect of

speech on motion sensors, we need to take in account

the medium through which an audio signal travels

to the motion sensors. The transmission of speech to

motion sensors could be through vibrations in the air

or vibrations within the surface shared by both the

speech generating device and the motion sensors. We test

conduction of sound through air and through commonly

used surfaces such as wood and plastic.

3) Sound Pressure Level: Sound pressure level is an

indicator of the loudness of sound and is measured in

decibels (db). Louder sounds contain more energy and

could have greater effect on the motion sensors. For

this reason, we test the sounds at different loudness

measured in decibels to correlate loudness with effect

on the motion sensors.

We design our scenarios based on the three factors detailed

above. The initial setup in our work is similar to the experi-

mental setup designed in [1] where the smartphone is placed

on a desk with a loudspeaker that emits speech. For human

speech, we position a human speaker very close to the desk

on which the smartphone is placed to test the potential for

capturing human speech.
1) Machine-Rendered Speech: We begin by recreating the

scenario reported in Gyrophone [1], where the smartphone

is placed on a desk with a loudspeaker (with subwoofer)

that emits human speech. The scenario, henceforth referred

as “Loudspeaker-Same-Surface”, is depicted in Appendix Fig

1. Here, the phone is in full contact with the surface on which

the loudspeaker is placed. As motivated earlier, this scenario

can occur in restricted closed door meetings or speeches where

the designated speakers are speaking in a microphone and their

speech is relayed to the audience through loudspeakers. In this

case, the attacker places a smartphone on the same surface as

the loudspeaker so that the motion sensors in the smartphone

can pick up speech played through the loudspeakers, which

are then read by the attacker. The attacker can also utilize a

compromised smartphone that the user inadvertently places on

the same surface as the sound source.

An additional scenario for machine-rendered speech would



be placing the smartphone containing the motion sensors

on a different surface than the speech rendering device.

We implement this scenario, called “Loudspeaker-Different-

Surface”, by placing the smartphone on a different surface

than the loudspeaker, as depicted in Appendix Figure 2.

Additional scenarios are tested with laptop speakers “Laptop-

Same-Surface”. Laptop speaker scenario can occur when the

victim is in, for instance, a VoIP call using his/her laptop

with its speakers turned on and put down their smartphone

near the laptop. We also test smartphone speaker scenario

“Phone-Different-Surface” similar to [2] where the speech

is rendered through smartphone speakers and picked up by

another smartphone placed in its vicinity.

2) Human Speech: In all the previously described scenar-

ios, the speech used for measuring the response of the motion

sensors is being produced by a loudspeaker. Such machine-

rendered speech is different from a human speaker in the

sense that a loudspeaker can effectively produce a louder

speech than a human can. In order to achieve commonly

occurring setup, we design a human speaker scenario where a

human speaker speaks directly in the smartphone. This setup

mimics a scenario where an attacker may eavesdrop on user’s

conversation that takes place on or near their smartphone.

In our experiment, we place the phone on a stationary and

isolated surface and ask the test subjects to speak into the

smartphone. In one scenario, we ask the human subjects to

speak in normal voice (“Human-Normal”) and in the other

scenario, we ask them to speak as loud as possible (“Human-

Loud”) to maximize the effect of speech (if any) on the motion

sensors.

3) Signal Analysis Methodology: We developed a two-

pronged approach to analyze the effect of speech on the motion

sensors. In the initial step, we analyze the motion sensor signal

in the frequency domain to look for footprints indicating the

presence of speech. If the frequency spectrum shows such

an evidence, techniques proposed in [1] and [2] could be

used to further classify, recognize or reconstruct the speech

signal (such classification is beyond the scope of our paper).

If the frequency spectrum is unable to show any evidence, we

analyze the signal in time domain to look for effects of speech

on motion sensors.

Frequency Domain Analysis: To perform the analysis of the

motion sensor behavior in presence of speech in the frequency

domain, we record speech through the motion sensors and plot

the spectrum of the observed signal. We perform similar proce-

dure as prescribed in [1] by playing a 280Hz tone and a multi-

tone (consisting of signals having frequencies between 130Hz

and 200Hz) from a device for machine-rendered scenarios.

Since motion sensors have low sampling rates, the observed

frequency range is limited. In case of gyroscope, the sampling

rate is 200Hz so observable frequency is limited to 100Hz.

Due to this behavior, we depend upon aliasing effect to detect

the effects due to the played sound on the spectrum at sub-

100Hz frequency range [1].

Time Domain Analysis: In order to measure the presence of

a noticeable response of the motion sensors against speech

in time domain, we need to compare their behavior in the

presence and absence of speech signals. This requires creating

two (nearly) identical environments for all the previously de-

scribed scenarios where one environment contains speech and

the other environment is devoid of speech. Placing identical

sensors in both environments and measuring their response

would accurately determine the susceptibility of motion sen-

sors against human speech. However, creating acoustically

identical environments may prove to be a challenge where all

parameters like temperature, humidity, pressure, the material

and the design of the environment need to be same and

constant throughout the experimental phase.

An anechoic chamber as suggested in [1] may be deemed

suitable for creating identical acoustic chambers. However,

in our work, we circumvent this challenge by performing

the normal experiment with human speech immediately fol-

lowed by a control experiment with no speech, under normal

room conditions (in a quiet laboratory room inside university

building). If we do not allow any sudden and significant

interference (acoustic or vibration) in the environment between

the experiments, it should be safe to assume that all the

environment variables remained almost constant throughout

the experiment. This means the experiments were performed

under almost similar conditions and the only noticeable effect

should be due to the human speech. In that case, our setup

would be emulating the behavior of nearly identical acoustic

environments, as described previously.

We recorded and analyzed the sensor readings looking for

noticeable effect such as increase in sensor values that may

indicate towards presence of speech. We observed multiples

audio samples from TIDigits speech corpus[24] and concluded

that the pronunciation of a single digit in the corpus took no

more than one second. The effect of speech on motion sensor

readings lasts for around 0.5 seconds meaning for a sampling

frequency of 200Hz (as deployed by the motion sensors), this

time duration equates to 100 samples. Thus, we windowed

each recorded sample using a window size of 100 samples

with an overlap of 50 samples. In each window, we calculated

the maximum range achieved by the sensor, which will give

us an idea of the disturbance in the readings. If speech signal

were strong enough to affect the sensors, the readings would be

much higher thereby producing a higher range (due to sensors

recording more motion data) when compared to sensor value

ranges observed in a relatively silent environment.

Sensor Reading Application: We used the Android application

available at [25] to capture sensor readings but modified the

source code to include accelerometer sensor readings.

V. SENSOR BEHAVIOR UNDER QUIET CONDITIONS

Before studying the effect of speech on motion sensors,

we observe motion sensors’ behavior under ambient condi-

tions, i.e., in a quiet environment. This behavior can then

be compared against the behavior of motion sensors under

the influence of speech with the assumption that the acoustic

environment remains the same.



(a) Gyroscope placed on a wooden surface (b) Accelerometer placed on a wooden surface

Fig. 1: Spectrum of the motion sensors along x axis that shows the effect of low frequencies contained in the multi-tone signal

(130-200Hz). The vibrations due to these frequencies are transmitted along the surface to the motion sensor of the smartphone.

A. Experiment Setup

Equipment: For all our experiments, we use Nexus 5 smart-

phone that contains the 6-axis motion sensor MPU6515 chip

designed by Invensense Inc. It combines a 3-axis gyroscope,

3-axis accelerometer along with a Digital Motion Processor

in a single chip. The output precision of the readings is 16

bits for both gyroscope and the accelerometer, and offers a

programmable full-scale range of ±2g, ±4g, ±8g and ±16g

for accelerometer and up to ±2000dps for the gyroscope. Typ-

ical resonant frequency for the gyroscope is listed as 27kHz

and the sampling frequency ranges from 4Hz to 8000Hz [26].

The sampling frequency for the accelerometer is described

as ranging from 4Hz to 4000Hz. Since Nexus 5 operates on

Android platform, the sampling rates for the motion sensors

are limited to 200Hz.

We also examined few other smartphone motion sensors

available in the market. STMicroelectronics’ LSM6DS3 mo-

tion sensor in Samsung Galaxy S7 offers similar precision

and programmable full-scale range for accelerometer and

gyroscope sensors as the Invensense motion sensors. Appendix

Table I lists some of the common smartphones and the motion

sensors used in these devices. From the table, we see that

most of the devices are using either Invensense or STMicro-

electronic sensors. The output data rate for all the Invensense

sensors is similar for both gyroscope and accelerometer except

Nexus 4 (MPU-6050) which is using an older chip. Similarly,

the typical mechanical frequency for gyroscope for all the

Invensense motion sensor chips is similar except for Nexus

4 again for the reasons specified previously. It also seems that

STMicroelectronics do not publish the resonant frequency for

their gyroscopes in the data sheet. STMicroelectronics motion

sensor differs from Invensense mostly in its output data rate

for gyroscope and accelerometer. User programmable range is

uniform across the vendors. Thus, we believe that the motion

sensors used in our experiments cover a general representation

of motion sensors in the market.

Location: We recorded motion sensor readings at four differ-

ent locations (quiet university lab spaces, henceforth denoted

as locations 1, 2, 3, and 4) that acted as near quiet environment.

At each location, the ambient noise level was 50 dB. Two of

the locations were office rooms inside two different graduate

student labs and the rest were conference rooms within the

lab spaces. The rooms were devoid of any human presence

and the only possible source of noise was the air conditioning

vents installed in the ceiling. The recordings were done for

an hour to get an estimate of motion sensors’ behavior at

rest in a quiet environment. The phone was placed on a

flat tabletop recording the sensor readings through the sensor

reading application.

B. Results

We divided sensor data into samples of length 10 seconds

each and calculated the maximum range for each sample.

We averaged the obtained maximum range values of sensor

readings to get same number of representative samples of

sensor readings as the number of samples collected in our

subsequent experiments. We plot these representative samples

against samples taken under various scenarios (Section IV-B)

to analyze sensor behavior under the influence of speech.

VI. SENSOR BEHAVIOR AGAINST SPEECH SIGNALS

In this section, we analyze the behavior of motion sensors in

the presence of speech. We construct the scenarios described

in Section IV and report the results that will help us determine

which scenarios are most susceptible to an acoustic side

channel attack through motion sensors.

A. Setup Information

Equipment: We use the same device, Nexus 5 from the

previous section, where it was used to record the behavior

of motion sensors in a quiet environment. For producing

machine-rendered speech, we use Logitech Z323 speakers with

a frequency response of 55Hz-20kHz that consists of two

satellites and a subwoofer (18 watts; 100Hz). Generation of

speech signals through smartphone speakers, a recreation of

the scenario depicted in [2], was done by iPhone 4S. We also

used Thinkpad W530 as the laptop speaker.

Word Data Set: We use the single digit pronunciations from

the speech corpus provided at [24] that is a subset of the
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Fig. 2: Spectrum of the motion sensors readings over different distances in presence of multi-tones (130-200Hz). Bright yellow

spots with intensity -20dB/Hz denote the footprints of the multiple frequencies contained in the signal affecting the sensor

readings.

TIDIGITS corpus. The speech dataset consists of 5 male and

5 female speakers who perform a single digit pronunciation

(“zero” to “nine” with an extra word “oh”) which is repeated

twice by each speaker. As noted in [1], low sampling fre-

quency restriction on the motion sensors, make it hard to

perform speaker-independent speech recognition. Hence, it is

reasonable to use a limited dictionary for speaker recognition

(such as [24] containing speech of digits) that could still leak

confidential information that contains numbers such as social

security and credit card numbers, birth dates, PIN etc.

B. Motion Sensors vs. Loudspeaker

In the loudspeaker setup, we test the effect of speech

produced by loudspeakers on the motion sensors of a smart-

phone. The smartphone may reside on same surface as the

loudspeaker or on a different surface that is not in physical

contact with the loudspeaker.

1) The Loudspeaker-Same-Surface Scenario: We first test

the behavior of motion sensors against low frequency tones

as a precursor to speech. We recreate the experimental setup

from [1] where a 280Hz tone and a multi-tone, consisting

of frequencies 130-200Hz, was used. The smartphone is kept

on the same surface as the loudspeaker that plays the tones

(Appendix Figure 1). We test four different surfaces of which

three were wooden desks of varying width and one was a

plastic tabletop.

The frequency analysis from our initial experiments showed

that playing a 280Hz tone did not affect the gyroscope even

when the sound pressure level reached 92db on the wooden

surfaces but had some effect on the plastic surface at 92db.

At a sound pressure level of 102db, it affected the gyroscope

on all the surfaces except one where no effect was observed

on gyroscope at 102db. The accelerometer, in contrast, was

affected on all the surfaces even at a volume of 72db.

When the multi-tone was played, we observed that all the

surfaces produced a pronounced effect on both gyroscope and

accelerometer when the sound pressure level reached 92db.

Figure 1 shows the spectrum for gyroscope and accelerometer

for a wooden surface along x axis. The gyroscope was affected

along x and y axis of rotation while the accelerometer showed

the effect at x, y and z axis of rotation.

We tested Loudspeaker-Same-Surface scenario over varying

distance to observe the behavior of motion sensors when the

smartphone is placed at different distances from the loud-

speaker. The phone is placed at different distances of 1ft, 2ft,

3ft, 4ft, and 5ft with the audio level at the source being kept

constant at 92db. The resulting frequency spectrum plots for

distance 1ft and 4ft (Figure 2) show the captured signal for the

gyroscope (along x axis of rotation) and accelerometer (along

x axis). We observe similar intensity of the signal footprint

within the small range of our tested distance. This observation

indicates that the audio signal may still be captured by

the motion sensors even if the motion sensor is not placed

close to the loudspeaker. This behavior also indicates that

a scenario where loudspeaker and the smartphone reside on

same surface such as a conference table, it is possible for

motion sensors of the smartphone to get affected due to speech

from loudspeakers within the tested distance range.

Effect of Speech: To test the effect of speech on motion

sensors, we put the smartphone on the same tabletop (surface)

as the loudspeaker and used the word data set [24] as described

in Section IV. We set the volume of the loudspeaker to be at

the maximum value (99db) to achieve the most response in

the motion sensor readings. The surface used was one of the

surfaces that had showed effects of 280Hz tone and multi-tone

at 90db. The resulting setup is depicted in Appendix Figure 1.

Frequency Domain Analysis: We plot the recorded signal

from gyroscope and accelerometer in the frequency domain

that are depicted in Appendix Figure 4a (x axis rotation) and

Figure 4b (x axis), respectively. Similar frequency spectrums

were found for y and z axis rotation for the gyroscope and

y and z axis for the accelerometer. From the spectrum, we

can see a noticeable footprint for the speech signal on the

accelerometer spectrum (around the 3 second mark) that is

absent in the gyroscope spectrum. Thus, accelerometer seems

to be more sensitive to conductive vibrations from the surface

than the gyroscope. Even though, in our set-up we did not

observe any noticeable effect on gyroscope, the fact that multi-

tone showed an effect on gyroscope indicates that such an

effect may also exist for speech signals, as shown in [1].

Time Domain Analysis: The results from time domain analysis
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(f) Accelerometer readings along z axis

Fig. 3: Comparison of sensor behavior under ambient locations and in presence of speech in the Loudspeaker-Same-

Surface scenario. Maximum variance in sensor readings (in absence of speech) at quiet locations 1, 2, 3, 4 is plotted along

side maximum variance in sensor readings (in presence of speech) to determine the effect of speech on sensors. Due to surface

vibrations from loudspeaker, there is a noticeable effect on accelerometer readings that pushes the blue line plot significantly

higher than the line plots of quiet locations (denoted by green, magenta, cyan, and red line plots).

are shown in Figure 3. The gyroscope readings for x axis

(Figure 3a) show that maximum variation in sensor readings

in presence of speech are comparable to readings taken in

absence of speech at quiet locations (between 0.004 and 0.010

rad/s). Maximum variation in readings for y and z axis

follow similar pattern (Figure 3b and 3c) falling between 0.005

and 0.012 rad/s, and between 0.004 and 0.007 rad/s. The

accelerometer readings in Figure 3d, for the x axis, show that

the maximum variation (between 0.104 and 2.066 m/s2) in

presence of speech is higher than in absence of any speech

at the four locations (at 0.107 m/s2). Maximum variations

shown on y axis (Figure 3e) follow similar pattern (between

0.113 and 2.511 m/s2) for speech and 0.111 m/s2 without

speech, while maximum variations in readings along z axis

(Figure 3f) are much more higher than the readings along x

and y axis. The readings are between 0.555 and 7.073 m/s2

in presence of speech while they remains the same (around

0.111 m/s2) in absence of speech.

2) The Loudspeaker-Different-Surface Scenario: For the

Loudspeaker-Different-Surface scenario, we put the smart-

phone on a different surface from the loudspeaker and played

the word list from the word data set [24] as described in the

previous section. We set the volume of the loudspeaker to be

at the maximum value (99db) to achieve the highest possible

response in the motion sensor readings. The resulting setup is

depicted in Appendix Figure 2.

Frequency Domain Analysis: We analyzed the signal from

gyroscope and accelerometer readings in the frequency do-

main. The resulting spectrum is depicted in Figure 4c and

Figure 4d, respectively. The plotted gyroscope readings are

along x axis of rotation for the gyroscope and along x axis for

the accelerometer. We looked for signs of speech around 3.35

second mark that denotes the beginning of speech as per the

microphone recording. Both the spectrum figures seem to be

devoid of any noticeable footprint of the speech signal around

the intended time mark. This leads us to believe that speech

signals traveling through air may have no noticeable effect on

the motion sensors as per the frequency domain analysis.

Time Domain Analysis: In addition to frequency domain,

we also analyzed the readings in time domain as per our

measurement metrics and the results are shown in Figure 4 for

gyroscope and accelerometer. The gyroscope readings along x

and z axis in Figure 4a and 4c show that sensor behavior is

similar in presence and absence of speech (maximum range

varies between 0.004 and 0.008 rad/s). The readings for

y axis in Figure 4b show that the sensor reading with and

without speech have the variation for maximum range around

0.005 and 0.009 rad/s. We observe two spikes for speech

crossing 0.009 rad/s but there also exists two green spikes

around the same value that indicate that this behavior is also

displayed sometimes in absence of speech. For accelerometer,

the maximum variation in readings with or without speech
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(f) Accelerometer readings along z axis

Fig. 4: Comparison of sensor behavior under ambient locations and in presence of speech in the Loudspeaker-Different-

Surface scenario. Maximum variance in sensor readings (in absence of speech) at quiet locations 1, 2, 3, 4 is plotted along

side maximum variance in sensor readings (in presence of speech) to determine the effect of speech on sensors. The blue line

plot depicting maximum variance in sensor readings in presence of speech for the given scenario more or less follows similar

pattern as the line plots for quiet location indicating a possible lack of any observable effect on motion sensors due to speech.

falls between 0.089 to 0.328 m/s2 for x axis. For y axis, this

value is between 0.108 and 0.268 m/s2 while the variations

for maximum range in absence of speech are contained around

0.218 m/s2. The sample readings follow the same variation

pattern in presence of speech as in absence of speech for z

axis falling between 0.178 to 0.305 m/s2.

C. Motion Sensors vs. Laptop Speakers

For the Laptop-Same-Surface scenario, we use laptop speak-

ers instead of loudspeakers. A laptop’s speaker is less powerful

than a loudspeaker especially in reproducing low frequency

sounds accurately. In our experiments, we used Macbook Air

2013 model laptop and IBM Thinkpad W530 laptop to test

the effect of speech signals generated by their speakers on the

motion sensors of a smartphone placed nearby on the same

surface. We chose surface 3 as it was able to show response

to 280Hz beginning at 92db which the wooden surfaces were

unable to show. We set the volume level in the laptops at their

maximum value to induce most response from the motion

sensors. Since sound pressure level also depends upon the

generated signal, we report the sound pressure level for each

tested signal accordingly.

Recreating the steps used in the loudspeaker setup (Section

VI-B), we first test the response of the motion sensors against

a 280Hz tone and a multi-tone signal (130-200Hz) generated

by Macbook Air. The spectrum of the frequency domain

for gyroscope and accelerometer reveal no response for the

280Hz tone. For the multi-tone signal, the accelerometer shows

a faint response along z axis as per Figure 5. Contrasting

the result with the results obtained under loudspeaker setup

in Section VI-B1, we find that the loudspeaker was able

to correctly reproduce multi-tone signal that affected both

gyroscope and the accelerometer at 92db. The speaker from

laptop was only able to output the multi-tone signal at an

average sound pressure level of 67db and hence was unable to

produce any noticeable effect on gyroscope and a slight effect

on accelerometer along z axis.

Thinkpad W530’s speakers performed worse and were un-

able to output any audible sound for the multi-tone signal with

the average sound pressure level of 52db and no response was

produced on the frequency spectrum of either the gyroscope

readings or the accelerometer readings. Since laptop speakers

are not designed to produce enough bass effect, low frequency

sounds tend to get lost or distorted when played via laptop

speakers. In addition, due to limited sound volume, they are

unable to induce vibrations in the surface, that are powerful

enough to affect the motion sensors.

Similar behavior is observed when we played male and

female speech samples from the word data set as detailed in

Section VI-A. Both male and female speech samples could

only be generated at a sound pressure level of 80db and

71db respectively and were unable to generate any response



Fig. 5: Spectrum of accelerometer readings (z axis) for multi-

tone signal (130-200Hz) generated from laptop. Faint energy

signatures (circled in red) can be seen on the spectrum

indicating vibration effect produced due to the audio signal.

in the motion sensors. Thus, we believe that a limit to the

actual sound volume produced and the inability to correctly

reproduce low frequency sounds severely limits the capability

of the laptop speakers to affect the motions sensors in a

smartphone. Since our time domain analysis in the loudspeaker

setup failed to reveal any observable effect on the gyroscope

for the speech signals, laptop speakers being less powerful may

similarly be unable to reproduce any observable response in

the gyroscope sensor. Since accelerometer did show some hints

of the multi-tone signal (Figure 5) on frequency spectrum, a

more sophisticated frequency domain analysis [1] could be

used for further investigation of the presence of speech signal

in accelerometer readings.

Based upon our findings in Laptop-Same-Surface scenario,

we believe that Laptop-Different-Surface scenario would pro-

duce similar results. In Laptop-Different-Surface scenario, the

laptop is placed on a different surface from the smartphone

and the laptop generates speech signals. Since there exists an

air gap between the sensors and the source of speech signals in

Laptop-Different-Surface scenario in contrast to Laptop-Same-

Surface scenario, attenuation would be greater for the speech

signals. In addition, the inability of Macbook Air speakers to

produce the multi-tone signal above 67db, and male (female)

speech signals above 80db (71db), it makes it unlikely for

laptop produced speech signals to have any noticeable effect in

Laptop-Different-Surface scenario (due to the fact that no such

effect was observed in Loudspeaker-Different-Surface scenario

even with loudspeakers producing sound at 99db). For laptops

that are able to output high quality loud sounds, comparable

to a loudspeaker, we believe it would behavior in a similar

manner as Loudspeaker-Same-Surface scenario if placed on

same surface or Loudspeaker-Different-Surface scenario when

placed on different surface.

D. Motion Sensors vs. Phone’s Speakers

To examine the behavior of motion sensors against phone

speakers, we used an iPhoneTM4S phone speaker and played

the word list from the word data set [24], as described in the

previous section. We set the volume of the phone speaker at

the maximum value to achieve most response in the motion

sensor readings. The resulting setup is similar to Loudspeaker-

Different-Surface scenario and is depicted in Appendix Figure

3. It is a recreation of the experimental setup of [2].

Frequency Domain Analysis: The analysis of the motion

sensor signals shows no visible indication of speech signal

footprints in the frequency spectrum (Appendix Figure 5).

This behavior follows the behavior of Loudspeaker-Different-

Surface scenario from Section VI-B2. Since phone speakers

are considerably less powerful than a loudspeaker system, we

expect them to perform worse than loudspeakers.

Time Domain Analysis: The results of time domain analysis

of the sensor readings in presence of phone speakers on

a different surface are shown in Appendix Figure 6. We

observed that the maximum variation in gyroscope readings

hovered around 0.006 rad/s for x axis (Appendix Figure

6a) and around 0.005 rad/s for y and z axis (Appendix

Figure 6b and 6c). The accelerometer analysis shows us that

maximum variations in its readings are consistent in presence

and absence of speech at around 0.1 m/s2 for x, y and z axis

(Appendix Figure 6d, 6e and 6f). These comparisons lead us

to believe that phone speakers may not have any profound

effect on smartphone sensors.

E. Motion Sensors vs. Human Speech

1) The Human-Normal Scenario: We recruited 10 human

subjects (ages 20-40; 5 males, 5 females; graduate and above

education level) for our study that was approved by our

University’s IRB. The participation was voluntary and the

participants could withdraw any time. Our sample size, while

small in size, is adequate for judging motion sensor behavior

in presence of live human speech as we also provide for

two scenarios (normal and loud) for covering possible cases

that may occur in real world. All the subjects were healthy

(reported on their own accord) and did not suffer from any

ailments that affected their vocal chords. Each subject was

asked to recite the list of words that is used in [24]. The

subjects were seated in a quiet room on a chair, and were not

in physical contact with the table. The smartphone was placed

face-up on the table and was running the same application as

in previous experiments. The subjects were asked to take extra

care not to touch or move the table during the entire duration

of the experiment as to not affect the motion sensors. The

subjects were asked to go through the word list by speaking

each word in a normal conversational tone into the phone at

a close distance of 10cm.

Frequency Domain Analysis: In the frequency domain, the

spectrum of the recorded human speech by gyroscope does

not reveal any effects on the sensor readings along x, y and z

axis of rotation as per Appendix Figure 8a, 8b and 8c. Similar

pattern was found in the accelerometer readings as per Figure

8d, 8e and 8f.

Time Domain Analysis: The observations for Human-Normal

scenario are depicted in Figure 7 for gyroscope and accelerom-

eter. We observe that maximum observed range in gyrosocpe

readings during speech is approximately 0.004 and 0.006

rad/s for x axis (except outlier samples 17 that is around
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(d) Accelerometer readings along x axis
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(e) Accelerometer readings along y axis
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(f) Accelerometer readings along z axis

Fig. 6: Comparison of sensor behavior under ambient locations and in presence of live human speech (loud). Maximum variance

in sensor readings (in absence of speech) at quiet locations 1, 2, 3, 4 is plotted along side maximum variance in sensor readings

(in presence of speech) to determine the effect of speech on sensors. The blue line (maximum variance in presence of speech)

closely follows rest of the lines (that represent maximum variance in absence of speech) indicating similar behavior of sensors

in quiet locations and against loud human voice.

0.009 rad/s), 0.003 and 0.009 rad/s for y axis, and 0.003

and 0.007 rad/s for the z axis (Figure 7a, 7b and 7c). This

behavior follows similar to sensor readings taken in absence

of speech. For accelerometer, these values are approximately

0.1 m/s2 for x and y axis, and 0.18 m/s2 for z axis (Figure

7d, 7e and 7f).
2) The Human-Loud Scenario: This scenario is similar

to Human-Normal scenario with same subjects and same

equipment and location being used. The only change in this

scenario from Human-Normal scenario is that the subjects

were asked to shout as loud as they could instead of speaking

normally into a smartphone placed on the table. The word list

is kept same and the instructions to avoid any physical contact

with the table were followed.

Frequency Domain Analysis: The spectrum of recorded hu-

man speech, spoken as loud as possible, by gyroscope does

not reveal any effects on the sensor readings along x, y and z

axis of rotation as per Appendix Figure 7a, 7b and 7c. We find

similar behavior in the accelerometer readings as per Figure

7d, 7e and 7f.

Time Domain Analysis: We calculated maximum observed

range for the sensor readings in Human-Loud scenario. Our

findings, as shown in Figure 6a, 6b and 6c, indicate that the

metrics for gyroscope are around 0.005 rad/s for x axis. The

values for y and z axis are around 0.005 rad/s. Overall, these

numbers are very similar to our observations under speech free

environment at locations 1, 2, 3 and 4 in the plot. The values

from accelerometer are around 0.1 for x and y axis (Figure 6d

and 6e) and 0.2 for z axis as shown in Figure 6f (with samples

43, 94 and 97 being the most obvious outliers possibly due to

physical interaction of the user with the phone). These results

for accelerometer indicate similar behavior as in speech free

environment depicted by readings from Location 1, 2, 3 and

4 in Figure 6 and hence serve to consolidate our conclusion

from the frequency domain analysis.

VII. SUMMARY AND FURTHER INSIGHTS

Recalling the three factors (source of speech, audio transfer

medium and sound pressure level) that are important in de-

ciding whether a noticeable effect would be produced by the

speech on the sensors, we pick each of the tested scenarios,

summarize the obtained results and present the insights learned

from our analysis (summary of results is depicted in Table I).

Motion Sensors against Loudspeaker: The obtained results

from this setup indicate that motion sensors could possibly be

affected by the speech signals rendered by loudspeaker, when

the loudspeaker setup and the motion sensors are sharing the

same surface. Since the smartphone is in contact with same

surface as the loudspeaker setup, the conductive vibrations

through loudspeaker setup travel through the shared surface to

reach motion sensors. The amount of dampening of conductive
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Fig. 7: Comparison of sensor behavior under ambient locations and in presence of live human speech (normal). Maximum

variance in sensor readings (in absence of speech) at quiet locations 1, 2, 3, 4 is plotted along side maximum variance in

sensor readings (in presence of speech) to determine the effect of speech on sensors. The blue line (maximum variance in

presence of speech) closely follows rest of the lines (that represent maximum variance in absence of speech) indicating similar

behavior of sensors in quiet locations and against normal human voice.

TABLE I: Summary of the impact of speech on motion sen-

sors. Only scenarios studied in prior work were: Loudspeaker-

Same-Surface against gyroscope [1] and Phone-Different-

Surface against acceleroemter [2].

Scenario
Gyroscope

affected
Accelerometer

affected

Loudspeaker-Same-Surface possibly⋆ X

Loudspeaker-Different-Surface × ×

Laptop-Same-Surface × possibly⋆

Phone-Different-Surface × ×

Human-Normal × ×

Human-Loud × ×

⋆Sophisticated analysis in the frequency domain using machine learning may be able to

reveal the impact of speech, as shown by [1] in the Loudspeaker-Same-Surface scenario.

vibrations depends on the surface material though no notice-

able effect was seen in our experiments up to a distance of 4

feet on a wooden table surface. Similar conductive vibration

effects have also been reported in another attack vector [3]

where vibrations associated with user’s key presses, travel over

to a smartphone close by kept on the same surface as the

computer.

In the scenario where the loudspeaker and the smartphone

did not share a surface, in contrast, the obtained gyroscope

readings show similar behavior as when taken under quiet

conditions, that lead to the conclusion that gyroscope sensor

remains unaffected by the loudspeaker in this scenario. Similar

results from the examination of the accelerometer readings

point that the motion sensors possibly remain unaffected in

this scenario. Since this scenario was designed to have no

direct or indirect contact between the loudspeaker and the

smartphone (except for perhaps the ground), it removes the

medium of transfer for the conductive vibrations while the

acoustic vibrations can still travel through the air. Thus, we

believe that it were the conductive vibrations that affected the

motion sensor readings. In addition, we believe that acoustic

vibrations are unable to produce a significant impact on the

motion sensors as observed by the lack of a response in

the Loudspeaker-Different-Surface scenario. Therefore, we can

also assume that the behavior observed in [1] may have been

due to (indirect) conductive vibrations as opposed to (direct)

acoustic vibrations.

Motion Sensors against Laptop Speaker: In this scenario

(Laptop-Same-Surface), we observed that only accelerometer

was slightly affected by low frequency tones but speech signals

rendered by laptop speakers were not powerful enough to

induce a response in both gyroscope and accelerometer.

Motion Sensors against Phone Speaker: In this scenario

(Phone-Different-Surface), we observed no significant impact

on gyroscope and accelerometer due to the speech signals

transmitted from the phone speaker. Since this scenario is a

weaker setting than the loudspeaker setup due to the fact that



phone speakers lack the loudness and the richness of the sound

produced by a loudspeaker, this result seems to indicate that

the motion sensors may remain unaffected by speech signals

produced from smartphone speakers.

Motion Sensors against Normal Human Voice: The results

from this scenario (Human-Normal) indicate that there is

minimal variation in the sensor readings when compared

against the sensor readings taken in absence of speech, leading

us to believe that human speech in normal conversational tone

may be unable to produce significant response in the motion

sensor readings.

Motion Sensors against Loud Human Voice: This sce-

nario (Human-Loud) involved much louder human speech

and showed similar behavior for the motion sensors that

was observed in the previous scenario (Human-Normal). The

results leads to the notion that even loud human speech may

not be strong enough on its own to have a significant impact

on the motion sensors that are embedded in the smartphones.

All these results seem to indicate that direct acoustic vibra-

tions are unable to affect the motion sensors while traveling

through air. However, it is possible for other sounds such

as high frequency audio signals to affect gyroscope and

accelerometer as shown in [12], [13], [14], [15]. The difference

lies in the frequencies and power levels of the audio signals

used to influence the motion sensors. While the fundamental

frequency for speech is in the range 85-180 Hz (male) and

165-255 Hz (female), the audio signal used in prior work has

been near the resonant frequencies of the motion sensors and

around high sound pressure level of 90dB and above.

Accelerometer vs. Gyroscope: An interesting insight from

our experimental results (Table I) is that the accelerometer

seems to be more sensitive towards conductive vibrations than

the gyroscope. This behavior may be due to the reason that

in all our setups, the smartphone was placed on a flat surface.

Thus, linear motion along x, y axes may be natural (as captured

by the accelerometer), while rotation along x and y axes may

be restricted (as captured by the gyroscope) due to the surface

on which the smartphone is resting.

VIII. POTENTIAL FUTURE WORK

We showed that motion sensors seem to get impacted by

the speech signal only in certain scenarios depending upon

the source of speech generation, the medium of transfer and

sound pressure level. For such scenarios, future work may

be conducted, applying machine learning methods similar to

the work done in [1], in order to detect and classify the

speech impact to achieve speaker and gender identification in

frequency domain. To further strengthen the role of conductive

vibrations in the success of attacks that exploit motion sensors

for compromising speech privacy, in the threat scenarios

examined in this work, such vibrations could be measured

via Laser Doppler Vibrometer (LDV). Correlating the surface

vibrations with the motion sensor readings would reaffirm the

role played by conductive vibrations in such attacks.

Increasing the sampling rate of the motion sensors may

help them capture and record more information. This effect

can be achieved by using motion sensors that have a higher

sampling rate, though operating systems could be tempted to

limit the sampling rate as a security measure. Another way to

increase the sampling rate would be to consider a more relaxed

threat model where the adversary has the capability to override

the limit imposed by the operating system on the sampling

rate of the motion sensors via a covert malware application.

It is also possible for future generations of smartphones to

have an increased sampling rate for motion sensors for better

accuracy. This feature will possibly lead to better accuracy for

the adversary in the discussed threat scenarios and hence any

such design decisions need to be taken keeping such factors

in mind. The use of multiple sensors in a fashion similar to an

array of time interleaved data converters (interleaved ADCs)

could also be used to artificially ramp up the sampling rate as

also suggested in [1], [27]. This line of work would be another

interesting item for possible future work.

Further work may also explore other side-channel attacks

against motion sensors present in the research literature (e.g.

[3], [18], [17], [28], [29], [30]), and how it would affect

the attack feasibility if these attacks were to be extended to

different novel scenarios, in line with the theme of our work.

We believe such a discussion is necessary in order to enrich the

threat assessment of side-channel attacks on motion sensors

under different setups.

IX. CONCLUDING REMARKS

In this work, we conducted a threat analysis of the motion

sensors embedded in current smartphone platforms against

speech signals. In particular, we examined the possibility of

compromising the speech privacy of a user by exploiting the

motion sensor data in a covert fashion. We conducted our

study covering many possible attack scenarios and analyzed

the behavior of the motion sensors under all these scenarios.

Taking into account the performed investigation, we reached

the conclusion that the threat levels perceived due to motion

sensors’ recording of speech signals depend on a number of

factors and seem mostly due to result of conductive vibrations

produced by the speech generating device. The impact of the

studied threat under the designed scenarios therefore limits

itself to only specific settings. Further work must be conducted

similar to the threat scenarios designed in this work to assess

other computing platforms and paradigms that incorporate

motion sensors against speech privacy vulnerability, or lack

thereof (e.g., the embedded devices in the IoT space or an

aggregation of multiple devices with multiple motion sensors).
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APPENDIX

Fig. 1: Experiment setup depicting loudspeaker and the smart-

phone with embedded motion sensors placed on same surface.

Fig. 2: Experiment setup depicting loudspeaker and the

smartphone with embedded motion sensors placed on

different surfaces.

Fig. 3: Experiment setup depicting a phone speaker against the

smartphone with embedded motion sensors that are placed on

different surfaces.



TABLE I: Motion sensors specifications for some popular brands of smartphones (Courtsey: iFixit and Chipworks Inc.) The

specifications indicate nearly similar hardware and software features for these motion sensor chips.

Smartphone brand Vendor Sensor Gyroscope Accelerometer

User programmable range Output data rate Mechanical frequency User programmable range Output data rate

iPhone 6/6s
Invensense MPU-6700 ±250,±500,±1000,±2000 dps 4-8000 Hz 27kHz ±2g,±4g,±8g,±16g 4-4000Hz

Bosch BMA280 N/A N/A N/A ±2g,±4g,±8g,±16g 2000Hz

iPhone 7 Invensense ICM-20608-G ±250,±500,±1000,±2000dps 4-8000 Hz 27kHz ±2g,±4g,±8g,±16g 4-4000Hz

Samsung Galaxy S7 Edge STMicroelectronics LSM6DS3 ±125,±245,±500,±1000,±2000dps 12.5-1660 Hz Not available ±2g,±4g,±8g,±16g 12.5-6000 Hz

Samsung Galaxy S6 Invensense MPU-6500 ±250,±500,±1000,±2000dps 4-8000 Hz 27kHz ±2g,±4g,±8g,±16g 4-4000Hz

Samsung Galaxy S5 Invensense MP65M (6500) ±250,±500,±1000,±2000dps 4-8000 Hz 27kHz ±2g,±4g,±8g,±16g 4-4000Hz

Nexus 5 Invensense MPU-6515 ±250,±500,±1000,±2000dps 4-8000 Hz 27kHz ±2g,±4g,±8g,±16g 4-4000Hz

Nexus 4 Invensense MPU-6050 ±250,±500,±1000,±2000dps 4-8000 Hz
33kHz along x axis;

30kHz along y axis; 27kHz along z axis
±2g,±4g,±8g,±16g 4-1000Hz

Samsung Galaxy S3 STMicroelectronics LSM330DLC ±250,±500,±2000dps 95-760Hz Not available ±2g,±4g,±8g,±16g 1-5376Hz

(a) Gyroscope same surface (b) Accelerometer same surface (c) Gyroscope diff. surface (d) Accelerometer diff. surface

Fig. 4: Spectrum showing motion sensor readings along x axis in presence of male voice pronouncing “OH” in loudspeaker

setup. There is a lack of noticeable effect on the gyroscope spectrum for both scenarios while the accelerometer spectrum

shows the existence of speech for the same surface scenario.

(a) Gyroscope readings along x axis
of rotation

(b) Gyroscope readings along y axis
of rotation

(c) Gyroscope readings along z axis
of rotation

(d) Accelerometer readings along x
axis

(e) Accelerometer readings along y
axis

(f) Accelerometer readings along z
axis

Fig. 5: Spectrum of the motion sensors in presence of a phone speaker pronouncing “OH” indicating the lack of any observable

effect on motion sensor readings for the setup with phone speaker and a different smartphone containing motion sensor reside

on the same surface.
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(a) Gyroscope readings along x axis
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(b) Gyroscope readings along y axis
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(c) Gyroscope readings along z axis
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(d) Accelerometer readings along x axis
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(e) Accelerometer readings along y axis
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(f) Accelerometer readings along z axis

Fig. 6: Comparison of sensor behavior under ambient locations and in presence of speech in the Phone-Different-Surface sce-

nario. Maximum variance in sensor readings (in absence of speech) at quiet locations 1, 2, 3, 4 is plotted along side maximum

variance in sensor readings (in presence of speech) to determine the effect of speech on sensors. The blue line (maximum

variance in presence of speech) closely follows rest of the lines (that represent maximum variance in absence of speech)

indicating similar behavior of sensors in quiet locations and under the effect of speech from a phone speaker placed on a

different surface.



(a) Gyroscope readings along x axis of
rotation

(b) Gyroscope readings along y axis of
rotation

(c) Gyroscope readings along z axis of
rotation

(d) Accelerometer readings along x axis (e) Accelerometer readings along y axis (f) Accelerometer readings along z axis

Fig. 7: Spectrum of the motion sensors in presence of a human speaker (loud) pronouncing “OH” indicating the lack of any

observable effect on motion sensor readings for the setup with a smartphone (with motion sensors) under the effect of a human

speaker in a loud voice.



(a) Gyroscope readings along x axis of
rotation

(b) Gyroscope readings along y axis of
rotation

(c) Gyroscope readings along z axis of
rotation

(d) Accelerometer readings along x axis (e) Accelerometer readings along y axis (f) Accelerometer readings along z axis

Fig. 8: Spectrum of the motion sensors in presence of a human speaker (normal) pronouncing “OH” indicating the lack of

any observable effect on motion sensor readings for the setup with a smartphone (with motion sensors) under the effect of a

human speaker in a loud voice.


